Стратегия игрока в играх с несовершенной информацией должна, указывать, какие этот игрок выберет действия, если окажется в данном информационном множестве. Поскольку в играх с совершенной информацией в каждом из информационных множеств находится только одна вершина, то такая модификация определения стратегии полностью согласуется с данным ранее определением. Пользуясь понятием стратегии, мы можем распространить концепцию равновесия Нэша на динамические игры с несовершенной информацией. Определение ничем не будет отличаться от ранее данного. [c.667]
Однако зачастую такие вероятности неизвестны. Мы сталкивались уже с этой проблемой, рассматривая динамические игры с полной, но несовершенной информацией. В подобных ситуациях, коль скоро игрок стоит перед выбором в некотором информационном множестве, состоящем более чем из одной вершины, то ему приходится делать некоторые предположения относительно того, с какой вероятностью он может оказаться в той или иной вершине. Если игрок имеет такого рода ожидания, то на их основе он выбирает ту альтернативу, которая может обеспечить ему наибольший ожидаемый выигрыш. Эти рассуждения приводят к понятию совершенного байесовского равновесия. [c.681]
По-английски процесс избавления от лишних равновесий называют refinement — усовершенствование, уточнение. Особенно много способов уточнения равновесий предложено для динамических игр с несовершенной и/или неполной информацией, о которых пойдет речь ниже. [c.660]
Рассмотрим следующую динамическую игру с полной, но несовершенной информацией (Gibbons) [c.139]
Смотреть главы в:
Микроэкономика-третий уровень -> Динамические игры с несовершенной информацией