Динамические игры с несовершенной информацией

Динамические игры с несовершенной информацией  [c.664]

Стратегия игрока в играх с несовершенной информацией должна, указывать, какие этот игрок выберет действия, если окажется в данном информационном множестве. Поскольку в играх с совершенной информацией в каждом из информационных множеств находится только одна вершина, то такая модификация определения стратегии полностью согласуется с данным ранее определением. Пользуясь понятием стратегии, мы можем распространить концепцию равновесия Нэша на динамические игры с несовершенной информацией. Определение ничем не будет отличаться от ранее данного.  [c.667]


Однако зачастую такие вероятности неизвестны. Мы сталкивались уже с этой проблемой, рассматривая динамические игры с полной, но несовершенной информацией. В подобных ситуациях, коль скоро игрок стоит перед выбором в некотором информационном множестве, состоящем более чем из одной вершины, то ему приходится делать некоторые предположения относительно того, с какой вероятностью он может оказаться в той или иной вершине. Если игрок имеет такого рода ожидания, то на их основе он выбирает ту альтернативу, которая может обеспечить ему наибольший ожидаемый выигрыш. Эти рассуждения приводят к понятию совершенного байесовского равновесия.  [c.681]

По-английски процесс избавления от лишних равновесий называют refinement — усовершенствование, уточнение. Особенно много способов уточнения равновесий предложено для динамических игр с несовершенной и/или неполной информацией, о которых пойдет речь ниже.  [c.660]

Рассмотрим следующую динамическую игру с полной, но несовершенной информацией (Gibbons)  [c.139]