Дифференциал векторной функции

Дифференциал векторной функции 119  [c.119]

ДИФФЕРЕНЦИАЛ ВЕКТОРНОЙ ФУНКЦИИ  [c.119]

До того как мы вернемся к доказательству этого результата, заметим, что второй дифференциал векторной функции f S — > Rm, S С Rn, легко получается из (7). В самом деле, имеем  [c.147]


Основным инструментом в этой главе будет первая теорема об идентификации (теорема 5.11), которая говорит, как получить производную (матрицу Якоби) из дифференциала. На основании этой теоремы мы действуем следующим образом (i) вычисляем дифференциал матричной функции F(X), (ii) представляем в векторной форме, получая соотношение d ve F(X) = A(X)d ve X, и (iii) заключаем, что DF(X] = A(X). Простота и изящность этого подхода будет продемонстрирована на многих примерах.  [c.223]

Будем искать матрицу Якоби функции не путем вычисления каждой частной производной, а с помощью определения дифференциала. Для дифференцируемой векторной функции /(ж), согласно первой теореме об идентификации (теорема 5.6),существует взаимно-однозначное соответствие между дифференциалом функции of / и ее матрицей Якоби. А именно из равенства  [c.228]

В этой главе рассматриваются понятия вторых производных, дважды диф-ференцируемости и второго дифференциала. Особое внимание уделяется связи между дважды дифференцируемостью и аппроксимацией второго порядка. Мы определяем матрицу Гессе (для векторных функций) и находим условия для ее (столбцовой) симметрии. Мы также получаем цепное правило для матриц Гессе и его аналог для вторых дифференциалов. Доказывается теорема Тейлора для вещественных функций. Наконец, очень кратко обсуждаются дифференциалы высших порядков и показывается, как анализ векторных функций можно распространить на матричные функции.  [c.140]


Смотреть страницы где упоминается термин Дифференциал векторной функции

: [c.229]   
Матричное дифференциальное исчисление с приложениями к статистике и эконометрике (2002) -- [ c.119 , c.145 , c.147 ]