Гессе матрица

ГЕССЕ МАТРИЦА [Hessian matrix] — матрица вторых частных производных функции нескольких переменных  [c.60]


Кроме описанных способов выбора нейронов для расщепления, может быть использован анализ чувствительности, в процессе которого строятся матрицы Гессе - матрицы вторых производных функции ошибки по параметрам сети. По величине модуля второй производной судят о важности значения данного параметра для решения задачи. Параметры с малыми значениями вторых производных обнуляют. Анализ чувствительности имеет большую вычислительную сложность и требует много дополнительной памяти.  [c.168]

Соотношения (1.4) и (1.6) определяют знаки главных миноров матрицы Гессе для нашей функции и тем самым являются достаточным условием неположительной определенности соответствующей квадратичной формы (1.3). Поэтому для вогнутости линейно однородных функций с двумя ресурсами условие (1.4) достаточно.  [c.96]

Матрица Я, как уже говорилось, называется матрицей Гессе (или гессианом).  [c.74]


Матрицей этой системы уравнений является так называемая окаймленная матрица Гессе функции U.(Q). Обозначим ее символом Ц[. Решим систему (11.3.4) относительно dq /dpm.  [c.229]

При более последовательном подходе для улучшения процесса обучения можно использовать информацию о производных второго порядка от функции невязки. Соответствующие методы оптимизации называются квадратичными. Вся указанная информация собрана в матрице гессиана Н, имеющей размеры Nw х Nw, где Nw — число весов. Эта матрица содержит информацию о том, как изменяется градиент при малых смещениях по различным направлениям в пространстве весов. Прямое вычисление матрицы требует большого времени, поэтому разработаны методы, позволяющие избежать вычисления и хранения матрицы (спуск по сопряженному градиенту, масштабированный метод сопряженных градиентов (см. [197]), RBa kProp (см. [212]), квази-ньютоновский метод, метод Левенбер-га-Маркара).  [c.32]

Первое уравнение (4.17) показывает, как изменится выпуск при увеличении цены на продукцию фирмы. Поскольку матрица Гесса Н отрицательно определена, то и матрица Н"1 также отрицательно определена, поэтому  [c.234]

Отметим, что из факта существования функции Q в силу симметрии матрицы вторых производных (матрицы Гессе) для дважды дифференцируемой фунции нескольких переменных следуют равенства, связывающие чувствительности оценок к изменению запасов ресур-  [c.219]

Кроме того, матрица Гессе вторых производных этой функции по С должна быть при С = 0 отрицательно определенной.  [c.342]

Рассмотрим изменение матрицы Гессе функции / (С) при ее монотонном преобразовании. Предварительно запишем составляющие градиента в точке  [c.347]

Здесь через Г - и 7 j обозначены элементы матрицы Гессе преобра-  [c.348]

Чтобы функция FQ( ) была выпукла, достаточно, чтобы матрица Т = Tij была отрицательно определенной. Первые слагаемые в (9.108) отличаются от элементов 7 j матрицы Гессе исходной задачи неотрицательным множителем, так как функция FQ монотонно возрастающая. Если вторые слагаемые в этих выражениях равны нулю, то вогнутой функции достижимости исходной задачи будет соответствовать вогнутость и FQ( ).  [c.348]


Градиент и элементы матрицы Гессе для этой функции имеют следующий вид  [c.350]

Таким образом, матрица Гессе для функции достижимости преобразованной задачи представляет собой сумму  [c.350]

Первое из них представляет собой п уравнений относительно составляющих вектора А, а второе — условие отрицательной определенности квадратичной формы, которое проверяется по критерию Сильвестра применительно к матрице Гессе функции R .  [c.357]

Здесь и ниже через R f0 и R i обозначены частные производные R по соответствующим переменным. Условиям отрицательной определенности должна удовлетворять матрица Гессе функции R с элементами (см. (9.125))  [c.360]

Вторая часть составляет теоретическое ядро книги. Она полностью посвящена строгому изложению теории дифференциалов и основ анализа, сформулированных на языке дифференциалов. Вводятся понятия первого и второго дифференциалов, приводится правило идентификации для матриц Якоби и Гессе. Завершает главу параграф, посвященный теории оптимизации при наличии ограничений, изложенный в терминах дифференциалов.  [c.16]

Третья часть является прикладным ядром книги. Она содержит правила работы с дифференциалами, список дифференциалов от важных скалярных, векторных и матричных функций (включая собственные числа, собственные векторы и обратные матрицы Мура—Пенроуза). Также приведены таблицы идентификации для матриц Гессе и Якоби.  [c.16]

Четвертая часть, посвященная неравенствам, возникла благодаря нашему убеждению, что эконометристы должны легко оперировать неравенствами, такими как неравенство Коши-Буняковского (Шварца), неравенство Мин-ковского и их обобщения, а также владеть мощными результатами, например теоремой отделимости Пуанкаре. В какой-то мере глава является и историей нашего разочарования. Когда мы начинали писать эту книгу, у нас была амбициозная идея — вывести все неравенства методами матричного дифференциального исчисления. В конце концов, каждое неравенство может быть представлено как решение некоторой оптимизационной задачи. Однако эта идея оказалась иллюзией, поскольку матрица Гессе в большинстве случаев оказывается вырожденной в точке экстремума.  [c.16]

Обозначения. В книге мы используем, в основном, стандартные обозначения, за исключением того что векторы обозначены простым (не полужирным) курсивом. Специальные символы используются для обозначения производной (матрицы) D и матрицы Гессе Н. Оператор дифференцирования обозначается как d. Полный список всех символов, использованных в тексте, содержится в Указателе обозначений в конце книги.  [c.17]

В этой главе рассматриваются понятия вторых производных, дважды диф-ференцируемости и второго дифференциала. Особое внимание уделяется связи между дважды дифференцируемостью и аппроксимацией второго порядка. Мы определяем матрицу Гессе (для векторных функций) и находим условия для ее (столбцовой) симметрии. Мы также получаем цепное правило для матриц Гессе и его аналог для вторых дифференциалов. Доказывается теорема Тейлора для вещественных функций. Наконец, очень кратко обсуждаются дифференциалы высших порядков и показывается, как анализ векторных функций можно распространить на матричные функции.  [c.140]

Ранее мы определили матрицу, которая содержит все частные производные первого порядка. Это была матрица Якоби. Теперь определим матрицу (называемую матрицей Гессе), которая содержит все частные производные второго порядка. Дадим определение этой матрицы сначала для вещественных, а затем для векторных функций.  [c.141]

Пусть ф S — > R, S С Rn есть вещественная функция, а с есть точка из , в которой существуют гг2 частных производных второго порядка D -0(с). Тогда определим п х п матрицу Гессе Иф(с) как  [c.141]

Пусть / S —> Rm, S С Rn есть векторная функция, а с есть точка из , в которой существуют ran2 частных производных второго порядка Dj ./ ). Тогда ran x n матрица Гессе Н/(с) определяется как  [c.142]

Первая матрица является симметрической, вторая — нет. Достаточные условия для симметричности матрицы Гессе вещественной функции выведены в 7. Матрица Гессе векторной функции / не может, конечно, быть симметрической, если га 2. Мы будем говорить, что Н/(с) симметрична по столбцам, если матрица Гессе каждой из ее компонент / (г = 1,.. . , га) является симметрической в точке с.  [c.142]

Столбцовая симметрия матрицы Гессе 147  [c.147]

Следовательно, симметрия матрицы Гессе, которую мы будем рассматривать в следующем параграфе, приобретает фундаментальное значение, поскольку без нее мы не можем извлечь матрицу Гессе из второго дифференциала.  [c.147]

СТОЛБЦОВАЯ СИММЕТРИЯ МАТРИЦЫ ГЕССЕ  [c.147]

Мы уже видели ( 3), что матрица Гессе Иф не является, вообще говоря, симметрической. Следующая теорема дает достаточные условия для симметрии матрицы Гессе.  [c.147]

Пусть ф S — > R есть вещественная функция, определенная на множестве S из Rn. Если ф дважды дифференцируема во внутренней точке с из S, то п х п матрица Гессе Иф является симметричной в с, т. е.  [c.147]

Пусть / S — > Rm есть функция, определенная на множестве S из Rn. Если / дважды дифференцируема во внутренней точке с из 5, то тп х п матрица Гессе Н/ является симметричной по столбцам в с, т.е.  [c.149]

Симметричность по столбцам Н/(с) эквивалентна, как мы помним из 3, симметричности каждой из матриц Н/Дс), т.е. матриц Гессе отдельных компонент fi.  [c.149]

Теперь мы имеем все для того, чтобы вывести теорему о том, что второй дифференциал единственным образом определяет матрицу Гессе (и наоборот).  [c.149]

Экономико-математический словарь Изд.5 (2003) -- [ c.60 ]