Теоремы 5.1 и 5.2 относятся к одномерной стохастической аппроксимации. [c.363]
В [98] приведенное утверждение доказано только для одномерной стохастической аппроксимации. [c.377]
В 2 рассматриваются классические схемы одномерной стохастической аппроксимации и некоторые их модификации. Основное внимание здесь уделяется итеративным процедурам решения безусловной экстремальной задачи вида (1.2). Параграф 3 посвящен условиям сходимости многомерных процессов стохастической аппроксимации. Помимо классических схем здесь излагаются и результаты, полученные в последние годы.. В 4 приводится обзор обобщений схем стохастической аппроксимации на случай решения условных экстремальных задач. Только в этом случае стохастическая аппроксимация может рассматриваться как итеративный метод стохастического программирования. В 5 исследуется важный для приложений вопрос о скорости сходимости и возможных путях ускорения сходимости процессов стохастической аппроксимации. Процедуры, рассмотренные в 6 и 7, позволяют в ряде случаев отказаться от основных допущений, на которых основаны классические схемы стохастической аппроксимации, — от одноэкстремальности целевого функционала задачи и несмещенности оценок наблюдаемых случайных величин. [c.343]
В [212] построен непрерывный многомерный аналог процедуры стохастической аппроксимации Кифера — Вольфовица для вычисления экстремума функции регрессии. При этом предполагается, что ошибка наблюдения в момент времени t скалярной функции f(x) равна