Стохастическое программирование итеративные методы

Методы адаптации представляют собой достаточно общий итеративный процесс решения задач стохастического программированияпроцесс совершенствования решающих правил или статистических характеристик решающих распределений — по последовательным реализациям наборов случайных параметров условий задач. Формальная основа методов адаптации — различные обобщения схемы стохастической аппроксимации.  [c.15]


Итеративные методы решения задач стохастического программирования  [c.123]

В предыдущем пункте использованы процедуры итеративных методов решения задач выпуклого программирования в функциональных пространствах для установления вида решающих правил некоторых задач стохастического программирования. Следует, однако, подчеркнуть, что в приведенных рассуждениях существенной была не столько схема 1эе  [c.132]

Стохастическая аппроксимация в широком смысле слова представляет собой общий метод решения условных экстремальных задач при неполной информации об исходных данных. Мы будем рассматривать стохастическую аппроксимацию как общий итеративный метод решения задач стохастического программирования по последовательным реализациям случайных наборов параметров условий задачи. Такой подход к стохастической аппроксимации влияет известным образом и на ее проблематику и направления развития.  [c.341]


В настоящей главе кратко излагаются основные схемы стохастической аппроксимации и обсуждаются обобщения теории и методов, позволяющие строить итеративные вычислительные процедуры решения задач стохастического программирования.  [c.343]

В настоящей главе под стохастической аппроксимацией подразумевается теория и итеративные методы решения задач стохастического программирования по последовательным реализациям наборов случайных параметров условий задачи.  [c.345]

Естественно, что стохастическая аппроксимация как итеративный метод решения задач стохастического программирования представляет интерес только в многомерном случае. Это, однако, не единственный аргумент в пользу многомерных модификаций процедур стохастической аппроксимации. Различные причины заставляют конструктора в процессе проектирования и создания экспериментального образца сложной системы довольствоваться не наилучшими решениями. Однако при испытаниях системы возникает возможность совершенствовать ее качество, подбирая экспериментальным образом . значения регулируемых параметров и оценивая при этом величину показателя эффективности системы. Ошибки измерений и отсутствие информации о виде функциональной зависимости показателя качества системы от измеряемых параметров усложняют истолкование и использование экспериментальных данных для доводки образца. Опытные инженеры интуитивно используют для совершенствования систем по результатам испытаний схемы типа многомерной стохастической аппроксимации. Задача теории — оценить допустимый диапазон применения этих методов, модифицировать их, упростить вычисления и ускорить сходимость.  [c.351]


Итеративный метод решения двухэтапных задач, не требующий априорных характеристик случайных параметров условий, разработан Ю. М. Ермольевым и Н. 3. Шорам [110]. Ерю.шеву принадлежит, кроме того, ряд общих подходов к анализу задач стохастического программирования [104—109].  [c.17]

Обзор работ по специальной задаче стохастического программирования — задаче фильтрации и прогноза — и по итеративным методам стохастического программирования, связанным со стохастической аппроксимацией, приведены соответственно в гл. 14 и 15 настоящей монографии. Попытки получения общего подхода к различным схемам стохастического программирования предпринимались в работах И. Лемари [183], Д. Б. Юдина (352, 353], Ю. М. Ермольева [105, 107].  [c.18]

В настоящей главе обсуждаются методы построения решающих правил для одноэтапных задач стохастического программирования, а для отдельных моделей приводятся и явные выражения для решающих правил. В 1 рассматриваются частные модели первого класса, в которых предполагается, что решающие правилалинейные функции случайных составляющих условий задачи. Вычисление параметров решающих правил сводится к задачам выпуклого программирования. Параграф 2 посвящен изучению. М-модели с вероятностным ограничением общего вида. Относительно решающего правила л (со) не делается никаких предположений, кроме того, что л (со)—измеримая вектор-функция на множестве X произвольной структуры, на котором она определена. В 3 метод построения решающих правил из предыдущего параграфа обобщается на М-модель с конечнозначным ограничением — с условием, ограничивающим математическое ожидание случайной функции от х, принимающей конечное число значений. Таким условием может быть аппроксимировано любое статистическое ограничение. В 4 построены решающие правила (точнее, решающие таблицы) дляч Р-мо-дели с вероятностными ограничениями общего вида. В 5 рассматривается стохастическая задача со смешанными ограничениями. Эта модель отличается от задачи 4 дополнительными условиями, которые могут существенно изменить структуру решения. В 6—8 построены решающие правила для одноэтапных задач стохастического программирования со статистическими ограничениями достаточно общего вида. Модель, изученная в 6, представляет собой стохастический аналог общей задачи линейного программирования с двухсторонними ограничениями. Модель из 7 — стохастический аналог общей задачи квадратичного программирования. Модель, исследованная в 8, является стохастическим аналогом частной задачи выпуклого программирования с квадратичной целевой функцией и квадратичными ограничениями. Заключительный параграф главы ( 9) посвящен итеративным методам построения решающих правил одноэтапных задач стохастического программирования.  [c.84]

Условия, при которых классические процедуры стохастической аппроксимации сходятся к искомому экстремуму, требуют выпуклости или по крайней мере одноэкстремальности функции -Мш (со, х) по х. Это значит, что для использования стохастической аппроксимации в качестве итеративного метода решения задач стохастического программирования необходимо модифицировать классические схемы применительно к задачам условной оптимизации и отказаться от требования выпуклости или одноэкстремальности Мщ<р (ш, х).  [c.343]

Чтобы расширить круг задач стохастического программирования, для которых стохастическая аппроксимация может служить итеративным методом решения, целесообразно также отказаться от рассмотрения ошибок наблюдения как аддитивного шума, наложенного на детер-. минированный процесс аппроксимации. На. этом предположении основано доказательство сходимости большинства вычислительных схем стохастической аппроксимации. Некоторые задачи стохастического программирования (см., например, 5 гл. 14 Обобщенные задачи фильтрации и прогноза ) требуют разработки итеративных процессов оптимизации функционалов вида / (Мш<р (ю, х)) на некотором множестве X. Итеративные процессы решения некоторых классов двухэтапных задач стохастического программирования должны обеспечить последовательную условную оптимизацию функционалов вида M JR М (ш,, о>2, хг,х2),  [c.343]

В 2 рассматриваются классические схемы одномерной стохастической аппроксимации и некоторые их модификации. Основное внимание здесь уделяется итеративным процедурам решения безусловной экстремальной задачи вида (1.2). Параграф 3 посвящен условиям сходимости многомерных процессов стохастической аппроксимации. Помимо классических схем здесь излагаются и результаты, полученные в последние годы.. В 4 приводится обзор обобщений схем стохастической аппроксимации на случай решения условных экстремальных задач. Только в этом случае стохастическая аппроксимация может рассматриваться как итеративный метод стохастического программирования. В 5 исследуется важный для приложений вопрос о скорости сходимости и возможных путях ускорения сходимости процессов стохастической аппроксимации. Процедуры, рассмотренные в 6 и 7, позволяют в ряде случаев отказаться от основных допущений, на которых основаны классические схемы стохастической аппроксимации, — от одноэкстремальности целевого функционала задачи и несмещенности оценок наблюдаемых случайных величин.  [c.343]

В дальнейшем нас будут интересовать, главным образом, процессы типа Кифера — Вольфовица, поскольку от них естественно перейти к итеративным схемам решения условных экстремальных задач, в которых параметры целевой функции и ограничений случайны, т. е. к итера-тивньш методам решения задач стохастического программирования.  [c.345]

Т. Блум [31], Ж. Сакс [244] и другие обобщили схемы стохастической аппроксимации на многомерный случай. Кратко опишем не только многомерный аналог процедуры Кифера — Вольфовица оптимизации одноэкстремальной функции регрессии, но и многомерный аналог схемы Роббинса — Монро. Оба эти процесса могут быть использованы для построения итеративных методов решения задач стохастического программирования (см. 7).  [c.351]

Задачи стохастического программирования представляют собой условные экстремальные задачи. Поэтому подход к стохастической аппроксимации как к системе итеративных методов стохастического программирования требует обобщения процедур, разработанных для без-1 условных экстремальных задач, на случай задач с ограничениями. В [9] этот вопрос обходится, поскольку здесь с самого начала предполагается, что рассматриваемые итеративные алгоритмы не выводят траектории процесса из некоторого ограниченного замкнутого множества. В [304] предложены алгоритмы стохастической аппроксимации для условных экстремальных задач, в которых ограничения представляют собой равенства, содержащие функции регрессии некоторых величин, зависящих от искомого набора параметров. Алгоритмы используют классические схемы стохастической аппроксимации применительно к функции Лаграижа условной экстремальной задачи. Однако условия сходимости в [304] не сформулированы.  [c.357]

Математические методы управления в условиях неполной информации (1974) -- [ c.18 ]