Хотя для решения задачи линейного программирования существуют четкие конечные методы (они описаны в 47), не прекращается работа по созданию итерационных, приближенных методов. Для этого есть по крайней мере две причины. Дело в том, что реализация симплекс-метода встречает определенные трудности в экономических задачах высокой размерности (N, т 103). В таких задачах работа с матрицей объемом 108 ячеек памяти становится очень сложной. В то же время исходная матрица задачи, будучи слабо заполненной, часто может быть размещена в оперативной памяти машины. Встречаются задачи, элементы матрицы которой можно вообще не запоминать, а вычислять по сравнительно простым формулам. В таких ситуациях итерационные методы, не преобразующие исходной формы задачи и не порождающие новых объектов типа матрицы общего положения (как, например, биорто-гональный базис ф ), несмотря на значительно меньшую надежность, могут оказаться предпочтительными и даже единственно реализуемыми. Для нас же будет важна и другая причина, заставляющая обратиться к итерационным методам. Ведь задачи линейного программирования, возникающие при решении задач оптимального управления, являются конечно-разностными аппроксимациями континуальных задач найти функцию 8u (t) из условий [c.437]
Хотя для решения задачи линейного программирования существуют четкие конечные методы (они описаны в 47), не прекращается работа по созданию итерационных, приближенных методов. Для этого есть по крайней мере две причины. Дело в том, что реализация симплекс-метода встречает определенные трудности в экономических задачах высокой размерности (N, т 103). В таких задачах работа с матрицей объемом 108 ячеек памяти становится очень сложной. В то же время исходная матрица задачи, будучи слабо заполненной, часто может быть размещена в оперативной памяти машины. Встречаются задачи, элементы матрицы которой можно вообще не запоминать, а вычислять по сравнительно простым формулам. В таких ситуациях итерационные методы, не преобразующие исходной формы задачи и не порождающие новых объектов типа матрицы общего положения (как, например, биорто-гональный базис ф ), несмотря на значительно меньшую надежность, могут оказаться предпочтительными и даже единственно реализуемыми. Для нас же будет важна и другая причина, заставляющая обратиться к итерационным методам. Ведь задачи линейного программирования, возникающие при решении задач оптимального управления, являются конечно-разностными аппроксимациями континуальных задач найти функцию 8u (t) из условий [c.437]