Факторный анализ вращение

Обсуждать метод выполнения факторного анализа, включая формулирование проблемы, построение корреляционной матрицы, выбор метода, определение ряда факторов, их вращение и интерпретацию.  [c.717]


Первый этап состоит в формулировании проблемы факторного анализа и определении переменных, подвергаемых факторному анализу. Затем строится корреляционная матрица переменных и выбирается метод факторного анализа. Исследователь выбирает число факторов, которые следует выделить, и метод вращения факторов. Далее повернутые факторы следует интерпретировать. В зависимости от целей, можно вычислить значения факторов или отобрать  [c.721]

Значения факторных нагрузок в матрице факторной модели до вращения факторов, данные в табл. немного отличаются от значений факторных нагрузок в табл. 19.3, хотя структура нагрузок аналогична. Однако иногда структура нагрузок в анализе общих факторов отличается от таковой в анализе главных компонент по некоторым нагрузкам переменных на различные факторы. Матрица факторной модели после вращения факторов имеет структуру нагрузок, аналогичную структуре нагрузок в табл. 19.3, что приводит к аналогичной интерпретации факторов.  [c.735]


Факторный анализ выполнили по объясняющим переменным, руководствуясь главной целью — снизить количество переменных. Методом главных компонент с использованием метода вращения варимакс уменьшили 30 объясняющих переменных до 8 факторов с собственными значениями выше 1,0. Для интерпретации каждый фактор включал в себя переменные с нагрузками на этот фактор от 0,40 и выше. В двух случаях, когда переменные имели нагрузки 0,40 и выше на два фактора, каждой переменной присвоили один фактор, нагрузка на который была выше. Только одна переменная "легкость  [c.731]

Для определения психографических различий между тремя кластерами маркетологи дополнительно выполнили действия. Во-первых, для дискриминирующих переменных произвели дисперсионный анализ Три сегмента служили независимой а каждое психографическое зависимой переменной. Установлено, что 41 из 200 исходных психографических утверждений статистически значимы, Учитывая, что некоторые из этих значимых переменных, вероятно, измеряли одни и те же характеристики, выполнили факторный анализ главных компонент с четырьмя (которые объясняли 60,3% дисперсии), выделенными при вращении методом варимакс. Дэвис и Френч вычислили значения фактора для каждого из трех сегментов. В 2 показаны эти значения вместе с имеющими высокие нагрузки на эти факторы, а также даны средние переменных. Эту можно использовать для построения психографических профилей для каждого из трех сегментов, в кластерном анализе.  [c.827]

Поскольку линейную модель создают, прежде всего, для оценки направления градиента, которое заранее неизвестно, то можно использовать критерий минимум дисперсии предсказанного значения параметра оптимизации в любой точке факторного пространства при равенстве этих дисперсий на равном расстоянии от нулевой точки в любом направлении. Это эквивалентно требованию инвариантности плана при вращении системы координат относительно центра. Отсюда возникло название планов, удовлетворяющих этому критерию — ротатабельные планы. Принцип ротатабельности является важнейшим при выборе плана. Однако для случая линейной модели план можно сделать оптимальным в более широком смысле. Для этого вводят второй критерий — требование ортогональности плана. Ортогональность позволяет получить для коэффициентов уравнения оценки, независимые друг от друга, что очень важно при интерпретации. Как следствие выполнения этих требований, дисперсии для коэффициентов не только минимальны, но и равны друг другу. Все это создает идеальные условия для статистического анализа. Факторные планы удовлетворяют всем этим критериям, но так как полный факторный эксперимент содержит (при числе факторов больше трех) слишком много опытов, то используют дробные реплики. Реплики также должны удовлетворять всем критериям. Такими являются регулярные дробные реплики. ил  [c.223]


Смотреть страницы где упоминается термин Факторный анализ вращение

: [c.265]   
Маркетинговые исследования Издание 3 (2002) -- [ c.730 ]