Стохастическая аппроксимация в условных экстремальных задачах [c.357]
Рассмотренные обобщения стохастической аппроксимации на случай условных экстремальных задач конструктивны, если область определения стохастической задачи задается жесткими ограничениями. Дополнительные трудности возникают в том случае, когда не только целевой функционал, но и функции, определяющие ограничения задачи, являются функциями регрессии некоторых случайных величин, зависящими от векторного параметра х. [c.360]
Вопросы, связанные с обобщением схем стохастической аппроксимации на условные экстремальные задачи и на задачи со сложными целевыми функционалами, изучены для непрерывных аналогов меньше, чем для дискретных процедур. [c.380]
В 2 рассматриваются классические схемы одномерной стохастической аппроксимации и некоторые их модификации. Основное внимание здесь уделяется итеративным процедурам решения безусловной экстремальной задачи вида (1.2). Параграф 3 посвящен условиям сходимости многомерных процессов стохастической аппроксимации. Помимо классических схем здесь излагаются и результаты, полученные в последние годы.. В 4 приводится обзор обобщений схем стохастической аппроксимации на случай решения условных экстремальных задач. Только в этом случае стохастическая аппроксимация может рассматриваться как итеративный метод стохастического программирования. В 5 исследуется важный для приложений вопрос о скорости сходимости и возможных путях ускорения сходимости процессов стохастической аппроксимации. Процедуры, рассмотренные в 6 и 7, позволяют в ряде случаев отказаться от основных допущений, на которых основаны классические схемы стохастической аппроксимации, — от одноэкстремальности целевого функционала задачи и несмещенности оценок наблюдаемых случайных величин. [c.343]
Задачи стохастического программирования представляют собой условные экстремальные задачи. Поэтому подход к стохастической аппроксимации как к системе итеративных методов стохастического программирования требует обобщения процедур, разработанных для без-1 условных экстремальных задач, на случай задач с ограничениями. В [9] этот вопрос обходится, поскольку здесь с самого начала предполагается, что рассматриваемые итеративные алгоритмы не выводят траектории процесса из некоторого ограниченного замкнутого множества. В [304] предложены алгоритмы стохастической аппроксимации для условных экстремальных задач, в которых ограничения представляют собой равенства, содержащие функции регрессии некоторых величин, зависящих от искомого набора параметров. Алгоритмы используют классические схемы стохастической аппроксимации применительно к функции Лаграижа условной экстремальной задачи. Однако условия сходимости в [304] не сформулированы. [c.357]