В указанном виде задача оптимизации (6.4.27-6.4.29) может быть решена, например, с помощью метода неопределенных множителей Лагранжа[12]. Указанный приём позволяет свести задачу на условный экстремум целевой функции (6.4.27), при ограничениях (6.4.28-6.4.29), к задаче на безусловный экстремум. Однако, в этом случае некоторые из искомых переменных могут оказаться отрицательными, что означает рекомендацию взять в долг ценные бумаги j-ro вида в количестве X., т.е. провести операцию продажа без покрытия . Если взятие в долг ценных бумаг невозможно, то дополнительно к условиям задачи (6.4.27-6.4.29) необходимо добавить условие неотрицательности искомых переменных, то есть [c.134]
ОПТИМАЛЬНАЯ (ИЛИ ОПТИМИЗАЦИОННАЯ) ЗАДАЧА [optimization problem] — экономико-математическая задача, цель которой состоит в нахождении наилучшего (с точки зрения какого-то критерия) распределения наличныхресурсов. (Иногда то же Экстремальная задача.) Решается с помощью оптимальной модели методами математического программирования, т.е. путем поиска максимума или минимума некоторых функций или функционалов при заданных ограничениях (условная оптимизация) и без ограничений (безусловная оптимизация). [c.242]
Смотреть главы в:
Исследование систем управления -> Методы безусловной и условной оптимизации