Методы безусловной и условной оптимизации

Еще раз подчеркнем, что основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных средств решения проблемы. Однако нетрудно заметить, что задача решения системы уравнений (2.7), к которой сводится данный метод, в общем случае не проще исходной проблемы поиска экстремума (2.3)-(2.4). Методы, подразумевающие такое решение, называются непрямыми. Они могут быть применены для весьма узкого класса задач, для которых удается получить линейную или сводящуюся к линейной систему уравнений (2.7). Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций.  [c.86]


В указанном виде задача оптимизации (6.4.27-6.4.29) может быть решена, например, с помощью метода неопределенных множителей Лагранжа[12]. Указанный приём позволяет свести задачу на условный экстремум целевой функции (6.4.27), при ограничениях (6.4.28-6.4.29), к задаче на безусловный экстремум. Однако, в этом случае некоторые из искомых переменных могут оказаться отрицательными, что означает рекомендацию взять в долг ценные бумаги j-ro вида в количестве X., т.е. провести операцию продажа без покрытия . Если взятие в долг ценных бумаг невозможно, то дополнительно к условиям задачи (6.4.27-6.4.29) необходимо добавить условие неотрицательности искомых переменных, то есть  [c.134]

ОПТИМАЛЬНАЯ (ИЛИ ОПТИМИЗАЦИОННАЯ) ЗАДАЧА [optimization problem] — экономико-математическая задача, цель которой состоит в нахождении наилучшего (с точки зрения какого-то критерия) распределения наличныхресурсов. (Иногда то же Экстремальная задача.) Решается с помощью оптимальной модели методами математического программирования, т.е. путем поиска максимума или минимума некоторых функций или функционалов при заданных ограничениях (условная оптимизация) и без ограничений (безусловная оптимизация).  [c.242]