Оценка максимального правдоподобия коэффициентов регрессии [c.55]
Сравним полученные оценки коэффициентов регрессии с излагавшимися в предыдущих разделах. Если весовые функции wt положить равными единице, то системы (7.46) и (7.50) дадут оценки максимального правдоподобия соответственно для плотностей (7.43) и (7.48). Каждая из весовых функций (7.47) и (7.51) распадается на два экспоненциальных множителя, первая экспонента одинакова у обеих функций. Если вторые экспоненты заменить единицами, то решения совпадут с изложенной в предыдущем пункте эв-регрессией при Я = 1/2. Вторые экспоненты определяют взвешивание по предиктор-ным переменным. [c.226]
Среди других методов определения оценок коэффициентов регрессии отметим метод моментов (ММ) и метод максимального правдоподобия (ММП). [c.101]
Определите точечные оценки коэффициентов линейного уравнения регрессии методом максимального правдоподобия, методом моментов. Сравните результаты с МНК. [c.111]
Здесь ut = t — Ae -i- Уравнение (11.9) линейно по комбинациям параметров, через которые эти параметры можно выразить. Однако (11.9) содержит лагированную эндогенную переменную и ошибки, не удовлетворяющие условиям классической модели линейной регрессии. Поэтому можно показать, что МНК-оценки коэффициентов уравнения являются несостоятельными. Для получения состоятельных оценок можно применить метод инструментальных переменных (п. 8.1), взяв, например, Xt— в качестве инструмента для yt-i, или воспользоваться методом максимального правдоподобия (глава 10). [c.268]
Смотреть главы в:
Эконометрика начальный курс -> Оценка максимального правдоподобия коэффициентов регрессии