Многоэтапные задачи стохастического ограничениями и апостериорными решающими правилами

Выделим две принципиально различные интерпретации задачи (2.1) — (2.3) и в соответствии с этим разделим задачи вида (2.1) —(2.3) на два подкласса. В задачах первого подкласса решение Xi на г-м этапе принимается после наблюдения реализации состояния природы (случайных параметров условий задачи) на г -м этапе. Решающие правила задач первого подкласса имеют вид Xi — Xii ), t = l,. .., п. Будем называть задачи первого подкласса многоэтапными задачами стохастического программирования с условными статистическими ограничениями и с апостериорными решающими правилами.  [c.194]


В главе приводится качественное исследование многоэтапных задач -стохастического программирования с апостериорными решающими правилами ( 1). В 2 формируется общий рекуррентный алгоритм построения апостериорных решающих правил. В 3 алгоритм конкретизируется применительно к многоэтапной стохастической задаче с условными вероятностными ограничениями, а в 5 — применительно к многоэтапной квадратичной задаче с условными статистическими. ограничениями. Параграф 4 посвящен Л-задаче, двойственной к многоэтапной задаче стохастического программирования.  [c.207]

Приведем общую схему построения апостериорных решающих правил для многоэтапной задачи стохастического программирования с условными вероятностными ограничениями. Эта задача представляет собой частный случай модели (1.1) — (1.2), в которой на каждом этапе ФА(ШЙ, х11) представляет собой характеристическую функцию случайного множества Gk(u>h, ft 1), зависящего от решений, выбранных на предшествующих этапах,  [c.212]


Подчеркнем особенности решения многоэтапных стохастических задач с условными статистическими ограничениями. Проведем рассуждения в терминах априорных решающих правил. Обсуждение особенностей решения задач с апостериорными решающими правилами проводится по такой же схеме.  [c.195]

Теорема 4.1. Пусть А — множество допустимых решающих правил (апостериорных пли априорных) многоэтапной стохастической задачи с безусловными статистическими ограничениями  [c.198]

Математические методы управления в условиях неполной информации (1974) -- [ c.194 ]