В главе приводится качественное исследование многоэтапных задач -стохастического программирования с апостериорными решающими правилами ( 1). В 2 формируется общий рекуррентный алгоритм построения апостериорных решающих правил. В 3 алгоритм конкретизируется применительно к многоэтапной стохастической задаче с условными вероятностными ограничениями, а в 5 — применительно к многоэтапной квадратичной задаче с условными статистическими. ограничениями. Параграф 4 посвящен Л-задаче, двойственной к многоэтапной задаче стохастического программирования. [c.207]
Приведем общую схему построения апостериорных решающих правил для многоэтапной задачи стохастического программирования с условными вероятностными ограничениями. Эта задача представляет собой частный случай модели (1.1) — (1.2), в которой на каждом этапе ФА(ШЙ, х11) представляет собой характеристическую функцию случайного множества Gk(u>h, ft 1), зависящего от решений, выбранных на предшествующих этапах, [c.212]
Подчеркнем особенности решения многоэтапных стохастических задач с условными статистическими ограничениями. Проведем рассуждения в терминах априорных решающих правил. Обсуждение особенностей решения задач с апостериорными решающими правилами проводится по такой же схеме. [c.195]
Теорема 4.1. Пусть А — множество допустимых решающих правил (апостериорных пли априорных) многоэтапной стохастической задачи с безусловными статистическими ограничениями [c.198]