Многоэтапные задачи стохастического с апостериорными решающими

В частных случаях, рассмотренных в гл. 8, для вычисления Xi — решения задачи первого этапа — имеются конструктивные приемы. В общем случае, когда задача первого этапа оказывается выпуклой и область K=Ki П Kz ее определения задана явно, можно вычислить xi по методу стохастического градиента [107]. Знание je i=J i позволяет сократить число этапов в исходной задаче на единицу. Параметры условий полученной таким образом задачи зависят от реализации MI. В некоторых задачах специальной структуры параметрические методы исключают необходимость в решении множества задач, определяемых возможными реализациями он. В общем случае требуются весьма громоздкие вычисления. Для некоторого набора реализаций он, выбор которого обусловлен структурой задачи, следует, используя, например, метод стохастических градиентов, вычислить узлы сетки (таблицы). значений x z( i), по которой можно восстановить с требуемой точностью значения составляющих x z(u)i) для произвольной реализации он. Этот процесс может быть продолжен. Однако с увеличением числа этапов трудоемкость вычислений и требования к памяти чрезвычайно быстро растут. При немалых п представляется более перспективным сведение многоэтапной задачи к вычислению апостериорных решающих правил одноэтапных задач. Если восстановление априорных решающих правил исходной задачи по апостериорным решающим правилам одноэтапной задачи связано со значительными вычислительными трудностями, целесообразно после вычисления x i рассматривать второй этап задачи (6.7) — (6.9) (при каждой реализации oi) как одноэтапную-задачу с апостериорными решающими правилами.  [c.254]


Выделим две принципиально различные интерпретации задачи (2.1) — (2.3) и в соответствии с этим разделим задачи вида (2.1) —(2.3) на два подкласса. В задачах первого подкласса решение Xi на г-м этапе принимается после наблюдения реализации состояния природы (случайных параметров условий задачи) на г -м этапе. Решающие правила задач первого подкласса имеют вид Xi — Xii ), t = l,. .., п. Будем называть задачи первого подкласса многоэтапными задачами стохастического программирования с условными статистическими ограничениями и с апостериорными решающими правилами.  [c.194]

Подчеркнем особенности решения многоэтапных стохастических задач с условными статистическими ограничениями. Проведем рассуждения в терминах априорных решающих правил. Обсуждение особенностей решения задач с апостериорными решающими правилами проводится по такой же схеме.  [c.195]


В предыдущих параграфах мы рассматривали две в известном смысле крайние информационные структуры, соответствующие априорным и апостериорным решающим правилам. Многоэтапное стохастическое программирование и развивалось главным образом применительно к этим двум схемам информированности принимающего решение. К таким информационным структурам можно естественным образом, исходя из содержательных соображений, или формальным искусственным путем сводить много различных схем задания информации, которой располагает управляющий системой на том или ином этапе выбора решения. Тем не менее при анализе практических многоэтапных задач стохастического программирования часто возникают специфические проблемы, связанные с изучением роли информации и памяти на отдельных этапах выбора решений.  [c.204]

МНОГОЭТАПНЫЕ ЗАДАЧИ СТОХАСТИЧЕСКОГО ПРОГРАММИРОВАНИЯ С АПОСТЕРИОРНЫМИ РЕШАЮЩИМИ  [c.207]

В главе приводится качественное исследование многоэтапных задач -стохастического программирования с апостериорными решающими правилами ( 1). В 2 формируется общий рекуррентный алгоритм построения апостериорных решающих правил. В 3 алгоритм конкретизируется применительно к многоэтапной стохастической задаче с условными вероятностными ограничениями, а в 5 — применительно к многоэтапной квадратичной задаче с условными статистическими. ограничениями. Параграф 4 посвящен Л-задаче, двойственной к многоэтапной задаче стохастического программирования.  [c.207]

Приведем общую схему построения апостериорных решающих правил для многоэтапной задачи стохастического программирования с условными вероятностными ограничениями. Эта задача представляет собой частный случай модели (1.1) — (1.2), в которой на каждом этапе ФА(ШЙ, х11) представляет собой характеристическую функцию случайного множества Gk(u>h, ft 1), зависящего от решений, выбранных на предшествующих этапах,  [c.212]


Подчеркнем еще раз, что рассуждения, аналогичные приведенным, позволяют привести в соответствие каждой многоэтапной задаче с априорными решающими правилами (так же как и задаче с апостериорными решающими правилами) одноэтапную стохастическую задачу, оптимальные апостериорные решающие правила которых позволяют получить оптимальные априорные решающие правила исходной задачи.. Вопрос о том, в каких случаях целесообразнее сводить многоэтапную задачу с априорными решающими правилами к одноэтапной или двухэтапной задаче, решается в каждом отдельном случае при сопоставлении трудоемкости решения эквивалентной задачи и восстановления по ее оптимальному плану оптимальных решающих правил исходной задачи вида (6.1) — (6.3).  [c.256]

С одной стороны, решение выгодно принимать возможно позже. При этом может быть учтено больше полезной информации и облегчается прогноз последствий решения. Другие факторы требуют ускорить выбор решения. Запаздывание с решением приводит обычно к дополнительной затрате ресурсов. Конкретное содержание задачи определяет рациональный компромисс между противоречивыми требованиями к моменту выбора решения. Во многих случаях, конечно, содержательная постановка задачи однозначно определяет характер и даже общий вид решающих правил. До сих пор мы рассматривали решение многоэтапных задач в чистых стратегиях. Естественно, что все здесь сказанное об априорных и апостериорных решающих правилах можно применительно к случаю, когда многоэтапные задачи решаются в смешанных стратегиях, повторить и для априорных и апостериорных решающих распределений. Как видно, однако, из материалов гл. 5, практические "приемы построения решающих распределений связаны с существенно более трудоемкой работой, чем вычисление соответствующих решающих правил. Во всех случаях, когда решение многоэтапных задач сводится к анализу соответствующих одноэтапных стохастических задач, вычисление оптимальных смешанных стратегий проводится согласно рекомендациям гл. 5.  [c.195]

В терминах рассматриваемой задачи многоэтапные стохастические модели с априорными и апостериорными решающими правилами обладают информационными структурами Л00-1) и Л00) соответственно.  [c.206]

Подчеркнем, что в соответствии с утверждением, доказанным в 5 гл. 5, в многоэтапных стохастических задачах с выпуклым функционалом фо(соп, хп) и вогнутыми составляющими вектор-функций (оД fe) и произвольной мерой рп, гак же как и в задачах с непрерывной мерой рп и произвольными функционалами о >о и tyh, оптимальные значения целевых функционалов на чистых и смешанных апостериорных стратегиях совпадают. Это значит, что для решения таких задач можно ограничиться построением оптимальных апостериорных решающих правил. Необходимость в построении оптимальных апостериорных решающих распределений в этом случае отпадает.  [c.212]

В гл. 10 намечен общий подход к построению апостериорных решающих правил задачи (6.1) — (6.3). Конструирование априорных решающих правил связано с существенно большими теоретическими и вычислительными трудностями. В 4—5 указаны пути построения априорных решающих правил для частных классов многоэтапных стохастических задач.  [c.252]

Теорема 4.1. Пусть А — множество допустимых решающих правил (апостериорных пли априорных) многоэтапной стохастической задачи с безусловными статистическими ограничениями  [c.198]

Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информациимногоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами.  [c.6]

В многоэтапной модели фильтрации и прогноза на i -м этапе, исходя из накопленной до сих пор информации и принятых решений, сглаживается или экстраполируется процесс т)(/) при t=ti. При этом, однако, учитывается, что критерий качества и ограничения задачи связывают между собой все оценки j, i—1,. .., п. Многоэтапная модель фильтрации и прогнозирования описывается многоэтапной задачей стохастического программирования с жесткими или условными статистическими или условными вероятностными ограничениями. В зависимости от содержательных особенностей задачи многоэтапная модель, как и одноэтап-ная, решается в априорных или апостериорных решающих правилах или решающих распределениях.  [c.39]

Настоящая глава посвящена многоэтапным стохастическим задачам с условными ограничениями и априорными решающими правилами. Качественный анализ таких задач связан с существенно большими трудностями, чем исследование стохастических задач с апостериорными решающими правилами. В общем случае для задач с априорными решающими правилами несправедливы теоремы двойственности, подобные тем, которые доказаны в предыдущей главе для задач с апостериорными решениями. Во многих случаях детерминированные эквиваленты задач с априорными решающими правилами оказываются многоэкстремальными моделями. Трудности, с которыми сопряжено исследование таких моделей, вынуждают сузить диапазон рассматриваемых задач по сравнению с кругом задач, обсуждаемых в предыдущей главе. Мы ограничимся здесь1 главным образом линейными задачами с условными вероятностными ограничениями.  [c.233]

В соответствии с формулами (5.4), (5.6), (5.8), (5J10) оптимальные апостериорные решающие правила многоэтапной стохастической задачи (5.1) — (5.2) определяются соотношениями  [c.233]

Математические методы управления в условиях неполной информации (1974) -- [ c.0 ]