Обсуждать метод выполнения факторного анализа, включая формулирование проблемы, построение корреляционной матрицы, выбор метода, определение ряда факторов, их вращение и интерпретацию. [c.717]
Первый этап состоит в формулировании проблемы факторного анализа и определении переменных, подвергаемых факторному анализу. Затем строится корреляционная матрица переменных и выбирается метод факторного анализа. Исследователь выбирает число факторов, которые следует выделить, и метод вращения факторов. Далее повернутые факторы следует интерпретировать. В зависимости от целей, можно вычислить значения факторов или отобрать [c.721]
Система уравнений (6.18) представляет собой формулировку основной задачи факторного анализа по известной корреляционной матрице R найти матрицу А и набор специфичностей, удовлетворяющих соотношениям v =l-h ,i= 1,2,. ..Д. [c.87]
Решение задач многофакторного корреляционного анализа производится на ПЭВМ по типовым программам. Сначала формируется матрица исходных данных, в первой графе которой записывается порядковый номер наблюдения, по второй — величина результативного показателя (У), а в следующих — данные по факторным показателям (х.). Эти сведения вводятся в ПЭВМ, и рассчитывается уравнение множественной регрессии, которое в нашей задаче получило следующее выражение [c.69]
Решение задачи многофакторного корреляционного анализа проводится на ПЭВМ по типовым программам. Сначала формируется матрица исходных данных (табл. 7.5), в первой колонке которой записывается порядковый номер наблюдения, во второй - результативный показатель (К), а в следующих - факторные показатели (х/). [c.145]
Для проверки целесообразности использования факторной модели анализа зависимости перменных существует несколько статистик. С помощью критерия сферичности Бартлетта проверяется нулевая гипотеза об отсутствии корреляций между переменными в генеральной совокупности другими словами, рассматривается утверждение о том, что корреляционная матрица совокупности — это единичная матрица, в которой все диагональные элементы равны 1, а все остальные равны 0. Проверка с помощью критерия сферичности основана на преобразовании детерминанта корреляционной матрицы в статистику хи-квадрат. При большом значении статистики нулевую гипотезу отклоняют. Если же нулевую гипотезу не отклоняют, то целесообразность выполнения факторного анализа вызывает сомнения. Другая полезная статистика — критерий адекватности выборки (КМО). Данный коэффициент [c.723]
Последняя стадия факторного анализа заключается в определении соответствия модели факторного анализа исходным данным, т.е. степени ее подгонки. Основное допущение, лежащее в основе факторного анализа, состоит в том, что наблюдаемая корреляция между переменными может быть свойственна общим факторам. Следовательно, корреляции между переменными можно вывести или воспроизвести из определенных корреляций между переменными и факторами. Изучив разности между наблюдаемыми корреляциями (данными в исходной корреляционной матрице) и вычисленными корреляциями (определенными из матрицы факторных нагрузок), можно определить соответствие модели исходным данным. Эти разности называют остатками (residuals). Если много остатков с большими значениями, то факторная модель не обеспечивает хорошее соответствие данным и требует пересмотра. Из данных табл. 19.3 видно, что только значение пяти остатков превышает 0,05, свидетельствуя тем самым о приемлемом соответствии модели данным. [c.731]