Примените двухступенчатую модель оценки стоимости опционов к выводу формулы для определения цены опциона "пут". [c.285]
Двухступенчатая (биномиальная) модель оценки стоимости опционов Ml5.6. Динамическое дублирование опционов и биномиальная модель Ml5.7. Модель ценообразования опционов Блэка-Шоулза [c.260]
Двухступенчатая (биномиальная) модель оценки стоимости опционов, 482 [c.338]
Итак, усиление изменчивости курса акций при неизменном текущем курсе и ожидаемой доходности акций приводит к повышению ожидаемой доходности опционов "пут" и опционов "колл1 на эти акции. Следовательно, при повышении изменчивости курса акций возрастают цены на опционы "пут" и "колл". Более того, из уравнения паритета опционов "пут" и "колл" следует, что повышение изменчивости курса акций должно приводить к одинаковому росту цен на опционы "колл" и соответствующие опционы "пут" (т.е. опционы "пут", имеющие тот же срок истечения и цену выполнения, что и опцион "колл"). 15.5. ДВУХСТУПЕНЧАТАЯ (БИНОМИАЛЬНАЯ) МОДЕЛЬ ОЦЕНКИ СТОИМОСТИ ОПЦИОНОВ [c.271]
Рассмотренная выше модель оценки стоимости опциона более совершенна, чем двухступенчатая модель. Она называется биномиальной моделью оценки стоимости опциона 1 (Ыпопиа орйоп-рпств тоае ). Большая реалистичность и точность в биномиальной модели достигаются при делении промежутка времени в один год на все меньшие и меньшие интервалы. Биномиальные модели оценки стоимости опционов широко применяются на практике. Число используемых промежутков времени зависит от требуемой в данном конкретном случае точности. 15.7. МОДЕЛЬ ЦЕНООБРАЗОВАНИЯ ОПЦИОНОВ БЛЭКА-ШОУЛЗА [c.273]
Предположим, что курс акций может принимать при наступлении срока истечения опциона только одно из двух возможных значений. Несмотря на то что. такое предположение нереалистично, подобная двухступенчатая модель (лу/о-5Ы1е тоое ) создает основу для более реалистичной и широко используемой на практике биномиальной модели (Ьшопиа тоае ) оценки стоимости опционов. Интуитивное представление о стоимости опционов на основании двухступенчатой модели ведет также и к модели Блэка—Шоулза. [c.271]