Нелинейные многофакторные модели [c.111]
Зависимости в экономике могут быть не только прямыми, но и обратными, и нелинейными. Регрессионная модель может быть построена при налички любой зависимости, однако в многофакторном анализе чаще всего используют линейные модели вида. [c.122]
Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, х[,х2,...,хп у должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида [c.101]
На развитых секторах рынка недвижимости эксперты-оценщики используют многофакторные линейные и нелинейные модели типа [c.287]
Наиболее предпочтительны линейные многофакторные регрессионные модели. При использовании же нелинейных многофакторных моделей увеличение числа параметров ведет к снижению точности оценок и сложности интерпретации возникают сложности и при их оптимизации. Однако практически наиболее употребимые непрерывные (линейные и нелинейные) регрессионные модели предполагают наличие качественной однородности рассматриваемой совокупности, что наблюдается далеко не всегда. Неизбежны и различия в уровне техники, технологии и организации производства на отдельных объектах исследуемой совокупности, вызванные различиями в возрасте объектов (или отдельных единиц оборудования), их мощности, структуре выпуска продукции и ее назначении, природных условиях и т. д. Эти различия могут быть таковы, что внутри общей совокупности четко выделяются особые подсовокупности с различными характеристиками интересующих нас зависимостей. В этих условиях применение непрерывных моделей неправомерно, что вынуждает переходить к построению дискретных и дискретно-непрерывных моделей. [c.40]
В третьей части основное внимание уделено применению классических нелинейных многофакторных моделей прогнозирования. Совершено очевидно, что сложные нелинейные многофакторные модели невозможно просчитать вручную, поэтому подробно рассматривается возможность применения пакета Statisti a для этих целей. [c.6]
Для решения данной проблемы использован статистический пакет Statisti a. Данному программному продукту посвящен ряд работ и учебных пособий известных авторов, однако в них почти не рассмотрены практические вопросы построения нелинейных многофакторных моделей. [c.97]
Теснота связи между переменными величинами может иметь различные значения, если рассматривать ее с позиции характера зависимости (линейная, нелинейная). Если установлена слабая связь между переменными в линейной зависимости, то это совсем не означает, что такая связь должна быть в нелинейной зависимости. Показателем, хаРактеРизУющим значимость факторов при различной форме связи, яв/1яется корреляционное отношение. Оценка факторов по корреляционному отношению уже на этом этапе анализа позволяет предварительно уст0новить вид многофакторной связи, что служит хорошей предпосылкой ПРИ выборе конкретной модели исследуемого показателя. [c.17]
Смотреть страницы где упоминается термин Нелинейные многофакторные модели
: [c.2] [c.25]Смотреть главы в:
Методы прогнозирования в условиях рынка -> Нелинейные многофакторные модели