Уравнение (7) показывает, что, в то время как первый дифференциал вещественной функции ф является линейной функцией от и, второй дифференциал будет квадратичной формой по и. [c.146]
Во многих случаях для дифференциала второго порядка вещественной функции ф(Х) справедливо одно из следующих двух представлений [c.249]
Если У — вещественная матрица размера га х га, то через Y мы обозначаем присоединенную к Y т х т матрицу. Если задана матричная функция F размера т х га, определим матричную функцию F размера т х т как F (X) = (F(X)) . Цель этого параграфа — найти дифференциал F . Докажем сначала теорему 6. [c.205]
Наконец, если АО есть простое собственное значение вещественной симметрической матрицы XQ порядка n, a UQ — соответствующий собственный вектор, то существует дважды дифференцируемая собственная функция Л такая, что X(XQ) = АО (см. теорему 8.7). Дифференциал второго порядка в точке XQ находится по теореме 8.10, а именно [c.250]
В этой главе рассматриваются понятия вторых производных, дважды диф-ференцируемости и второго дифференциала. Особое внимание уделяется связи между дважды дифференцируемостью и аппроксимацией второго порядка. Мы определяем матрицу Гессе (для векторных функций) и находим условия для ее (столбцовой) симметрии. Мы также получаем цепное правило для матриц Гессе и его аналог для вторых дифференциалов. Доказывается теорема Тейлора для вещественных функций. Наконец, очень кратко обсуждаются дифференциалы высших порядков и показывается, как анализ векторных функций можно распространить на матричные функции. [c.140]
Пусть ф дважды дифференцируемая вещественная функция от матрицы X размера п х q. Тогда для дифференциала второго порядка и матрицы Гессе функции ф в точке X выполняются следующие два соотношения [c.249]