Скалярные функции от матрицы, III. Собственное значение

В этой главе X всегда будет обозначать матрицу (обычно квадратную) вещественных переменных, a Z — матрицу комплексных переменных. Мы рассмотрим дифференциалы скалярных функций X (собственные значения, определитель), векторных функций X (собственные векторы), а также матричных функций X (обратная, МП-обратная, сопряженная матрицы).  [c.196]


В интересных примерах скалярных функций от матриц нет недостатка. В этом параграфе рассматриваются дифференциалы от следа для некоторых матричных функций. В 10 будут рассмотрены определители, а в 11 — собственные значения.  [c.231]

Скалярные функции от матрицы, III. Собственное значение 235  [c.235]

СКАЛЯРНЫЕ ФУНКЦИИ ОТ МАТРИЦЫ, III. СОБСТВЕННОЕ ЗНАЧЕНИЕ  [c.235]

Критерий оптимальности (3) имеет очевидный недостаток он не дает метода построения оценки — мы не можем минимизировать матрицу. Однако можно минимизировать скалярную функцию от матрицы ее след, определитель или наибольшее собственное значение. Подход, использующий минимизацию следа, оказывается наиболее привлекательным с практической точки зрения.  [c.322]

Пусть AI, А2,. . . , Ап — собственные значения матрицы ZQ G Спхп и А — простое собственное значение. Тогда существует скалярная функция Л ), определенная в окрестности N(ZQ) С Спхп матрицы Z0, такая что X (ZQ) = i и A(i)(Z) — (простое) собственное значение Z для всех Z N(ZQ). Кроме того, А( ) дифференцируема бесконечное число раз на N(ZQ), и  [c.215]