Мы пришли к одноэтапной задаче стохастического программирования, для которой в 6 гл. 4 при некоторых допущениях о характеристиках условий задачи построены оптимальные решающие правила. Решения задачи второго этапа имеют, таким образом, вид [c.260]
Задача стохастического программирования (3.1) -(3.3) в зависимости от вида целевого функционала (3.1) преобразуется в одноэтапную М -модель с вероятностными ограничениями, одноэтапную /"-модель с вероятностными ограничениями, одноэтапную /"-модель со смешанными условиями (для решения этих моделей используются априорные или апостериорные решающие правила) либо в одноэтапную задачу с построчными вероятностными ограничениями и решающими правилами нулевого порядка. [c.57]
Приведем примеры вычисления априорных решающих правил многоэтапных задач стохастического программирования по решающим правилам эквивалентных двухэтапных и одноэтапных задач. [c.259]
В настоящей главе обсуждаются методы построения решающих правил для одноэтапных задач стохастического программирования, а для отдельных моделей приводятся и явные выражения для решающих правил. В 1 рассматриваются частные модели первого класса, в которых предполагается, что решающие правила — линейные функции случайных составляющих условий задачи. Вычисление параметров решающих правил сводится к задачам выпуклого программирования. Параграф 2 посвящен изучению. М-модели с вероятностным ограничением общего вида. Относительно решающего правила л (со) не делается никаких предположений, кроме того, что л (со)—измеримая вектор-функция на множестве X произвольной структуры, на котором она определена. В 3 метод построения решающих правил из предыдущего параграфа обобщается на М-модель с конечнозначным ограничением — с условием, ограничивающим математическое ожидание случайной функции от х, принимающей конечное число значений. Таким условием может быть аппроксимировано любое статистическое ограничение. В 4 построены решающие правила (точнее, решающие таблицы) дляч Р-мо-дели с вероятностными ограничениями общего вида. В 5 рассматривается стохастическая задача со смешанными ограничениями. Эта модель отличается от задачи 4 дополнительными условиями, которые могут существенно изменить структуру решения. В 6—8 построены решающие правила для одноэтапных задач стохастического программирования со статистическими ограничениями достаточно общего вида. Модель, изученная в 6, представляет собой стохастический аналог общей задачи линейного программирования с двухсторонними ограничениями. Модель из 7 — стохастический аналог общей задачи квадратичного программирования. Модель, исследованная в 8, является стохастическим аналогом частной задачи выпуклого программирования с квадратичной целевой функцией и квадратичными ограничениями. Заключительный параграф главы ( 9) посвящен итеративным методам построения решающих правил одноэтапных задач стохастического программирования. [c.84]