Частные коэффициенты корреляции и их выборочные значения

Выборочным частным коэффициентом корреляции (или просто частным коэффициентом корреляции) между переменными Xt и Xj при фиксированных значениях остальных (р — 2) переменных называется выражение  [c.128]


Выше, в 3.3, для оценки тесноты связи между переменными был введен выборочный коэффициент линейной корреляции. Если переменные коррелируют друг с другом, то на значении коэффициента корреляции частично сказывается влияние других переменных. В связи с этим часто возникает необходимость исследовать частную корреляцию между переменными при исключении (элиминировании) влияния одной или нескольких переменных.  [c.128]

Выборочные (эмпирические) значения частных коэффициентов корреляции вычисляются по тем же формулам (1.22) — (1.23 ) с заменой теоретических значений парных коэффициен-  [c.84]

Вернемся к общему (негауссовскому) случаю. Практика многомерного статистического анализа показала, что частные коэффициенты корреляции, определенные соотношениями (1.22) — (1.23 ), являются, как правило, удовлетворительными измерителями очищенной линейной связи между х(1) и при фиксированных значениях остальных переменных и в случае, когда распределение анализируемых показателей ( (0), x(l . .., х(р>) отличается от нормального. Определив с помощью формулы (1.22) частный коэффициент корреляции в случае любого исходного распределения признаков (х(0 х(1 . .., х(р)), включим его в общий математический инструментарий корреляционного анализа линейных моделей. При этом их можно интерпретировать как показатели тесноты очищенной связи, усредненные по всевозможным значениям фиксируемых на определенных уровнях мешающих переменных. 1.2.3. Статистические свойства выборочных частных коэффициентов корреляции (проверка на статистическую значимость их отличия от нуля, доверительные интервалы). При исследовании статистических свойств выборочного частного коэффициента корреляции порядка k (т. е. при исключении опосредованного влияния k мешающих переменных) следует воспользоваться тем (см., например, [20, теорема 4.3.4]), что он распределен точно так же, как и обычный (парный) выборочный коэффициент корреляции между теми же переменными с единственной поправкой объем выборки надо уменьшить на k единиц, т. е. полагать его равным п — , а не я. Поэтому  [c.84]


Если применить процедуру вычисления выборочного частного коэффициента корреляции (см. п. 4.3), то оказывается, что в случае стационарного ряда yt значение выборочной частной автокорреляционной функции PA F(fe) вычисляется как МНК-оценка последнего коэффициента /3 в AR(f ) регрессионном уравнении  [c.290]

Смотреть страницы где упоминается термин Частные коэффициенты корреляции и их выборочные значения

: [c.82]    [c.109]    [c.295]