Согласованность отношения предпочтения с критериями

В рамках рассматриваемой модели многокритериального выбора принцип Эджворта-Парето может быть сформулирован в виде утверждения о том, что множество выбираемых решений содержится в множестве Парето. Иначе говоря, каждое выбираемое решение является парето-оптимальным. Математический эквивалент этому высказыванию — включение одного множества в другое. Для того чтобы доказать это включение, следует определенным образом ограничить весь класс задач многокритериального выбора, наложив специальные требования на указанные выше три объекта. Эти требования (аксиомы) относятся главным образом к отношению предпочтения ЛПР и могут быть интерпретированы как рациональное (или разумное , последовательное ) поведение в процессе выбора. Кроме того, среди этих требований имеется условие согласованности отношения предпочтения ЛПР и векторного критерия, поскольку каждый из этих двух объектов выражает определенные устремления (цели) одного и того же ЛПР, и потому они обязаны быть каким-то образом связаны друг с другом.  [c.10]


Согласование отношения предпочтения с критериями. Совершенно очевидно, что в задаче многокритериального выбора отношение предпочтения, равно как и критерии оптимальности, выражают интересы одного и того же ЛПР. Поэтому они должны быть каким-то образом взаимосвязаны (сопряжены) друг с другом. Настало время обсудить эту взаимосвязь.  [c.34]

Согласованность отношения предпочтения с критериями 35 Сужение множества Парето 14, 60, 64, 157  [c.173]

Будем говорить, что г-й критерий f согласован с отношением предпочтения >, если для любых двух векторов у, у" е Rm, таких, что  [c.35]

Содержательно согласованность данного критерия с отношением предпочтения как раз и означает, что ЛПР при прочих равных условиях заинтересовано в получении по возможности больших значений этого критерия.  [c.35]

Аксиома 3 (согласование критериев с отношением предпочтения). Каждый из критериев f, f2,. ..,/m согласован с отношением предпочтения >.  [c.35]

Согласование решений с помощью многокритериальных оценок. Наиболее известными среди них являются методы идеальной точки ранжирование по Парето функции (отношения) предпочтения ЛПР - согласование весов критериев и характеристик базовых шкал нахождением их центра тяжести кусочно-линейная аппроксимация функций предпочтения ЛПР метод X - коэффициентов. Подробно они рассмотрены в [5.8].  [c.169]


Критерий 1. Предпочтения центрального органа. Первая проблема заключается в том, что преследование ЦПО определенных целей является неотъемлемой частью этого процесса. Причем, чем больше число сформированных предпочтений, которые центральный орган стремится реализовать при помощи планирования и мер экономической политики, тем выше степень централизации. Вторая проблема указанного критерия касается степени согласованности централизованных и индивидуальных предпочтений. Это связано с различием между патерналистским отношением и принципом суверенности потребителя. При патерналистском отношении, с одной стороны, ЦПО полагает, что знает лучше самих граждан, в чем состоит их благо, и поэтому стремится навязывать решения, не обязательно совпадающие с предпочтениями населения. С другой стороны, большинство населения может считать, что центральный орган располагает самыми полными сведениями, и поэто-  [c.20]

Принятие решений в многокритериальной среде - количественный подход (2002) -- [ c.35 ]