Решение задач условной оптимизации методом Лагранжа. Одним из наиболее общих подходов к решению задачи поиска экстремума (локального максимума или минимума) функции при наличии связующих ограничений на ее переменные (или, как еще говорят, задачи условной оптимизации) является метод Лагранжа. Многим читателям он должен быть известен из курса дифференциального исчисления. Идея данного метода состоит в сведении задачи поиска условного экстремума целевой функции [c.84]
Метод Лагранжа — метод дифференциального исчисления, применяемый при наличии ограничивающих условий. Этот метод позволяет перейти от оптимизационной задачи с ограничениями к альтернативной оптимизационной задаче без ограничений, у которых совпадают решения. Фактически математическая задача на условный экстремум заменяется задачей на безусловный экстремум, но с увеличением числа неизвестных. [c.119]
Для решения этой задачи на условный экстремум применим метод Лагранжа. [c.141]
Еще раз подчеркнем, что основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных средств решения проблемы. Однако нетрудно заметить, что задача решения системы уравнений (2.7), к которой сводится данный метод, в общем случае не проще исходной проблемы поиска экстремума (2.3)-(2.4). Методы, подразумевающие такое решение, называются непрямыми. Они могут быть применены для весьма узкого класса задач, для которых удается получить линейную или сводящуюся к линейной систему уравнений (2.7). Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций. [c.86]
В конце XVIII века Лагранж предложил остроумный метод решения задачи (1), (2) на условный экстремум, в котором не следует прибегать к разрешению уравнения (2) относительно одной переменной при фиксированной другой переменной. В этом методе число независимых переменных не сокращается, а, наоборот, растет. [c.124]
В связи с этим методы решения задач на условный экстремум с помощью множителей Лагранжа в данном случае непосредственно неприменимы1. [c.163]
Смотреть главы в:
Математические методы в экономике Издание 2 -> Метод Лагранжа решения задачи на условный экстремум