Не забывайте, что при использовании статистических методов на данных, с которыми работают трейдеры, не будут выполняться некоторые требования статистического анализа. Некоторые из этих нарушений не очень серьезны благодаря центральной предельной теореме в большинстве случаев можно нормально анализировать даже данные, не соответствующие нормальному распределению. Другие, более серьезные нарушения, например наличие серийной корреляции, должны учитываться, но для оценки поправок вероятности на этот случай существуют специальные методы. Суть в том, что лучше работать с информацией, зная, что некоторые положения нарушены, чем работать вслепую. [c.87]
Предположение нормальности существенно упрощает решение многих вопросов, зависящих от свойств распределений. Так, например, теорема о нормальной корреляции (см., например, [303 гл. 13]) в явном виде дает формулу для условного математического ожидания /г -)-1 — E(An+i ] AI,.. . , АП), являющуюся оптимальной в среднеквад-ратическом смысле оценкой hn+i по hi, . . . , hn [c.108]
Вернемся к общему (негауссовскому) случаю. Практика многомерного статистического анализа показала, что частные коэффициенты корреляции, определенные соотношениями (1.22) — (1.23 ), являются, как правило, удовлетворительными измерителями очищенной линейной связи между х(1) и при фиксированных значениях остальных переменных и в случае, когда распределение анализируемых показателей ( (0), x(l . .., х(р>) отличается от нормального. Определив с помощью формулы (1.22) частный коэффициент корреляции в случае любого исходного распределения признаков (х(0 х(1 . .., х(р)), включим его в общий математический инструментарий корреляционного анализа линейных моделей. При этом их можно интерпретировать как показатели тесноты очищенной связи, усредненные по всевозможным значениям фиксируемых на определенных уровнях мешающих переменных. 1.2.3. Статистические свойства выборочных частных коэффициентов корреляции (проверка на статистическую значимость их отличия от нуля, доверительные интервалы). При исследовании статистических свойств выборочного частного коэффициента корреляции порядка k (т. е. при исключении опосредованного влияния k мешающих переменных) следует воспользоваться тем (см., например, [20, теорема 4.3.4]), что он распределен точно так же, как и обычный (парный) выборочный коэффициент корреляции между теми же переменными с единственной поправкой объем выборки надо уменьшить на k единиц, т. е. полагать его равным п — , а не я. Поэтому [c.84]