ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ [c.6]
Другая особенность состоит в том, что в книге читатель найдет как общую методологию использования математического инструментария и математических моделей в экономике, так и конкретное изложение основных математических понятий и методов функций и графиков функциональных зависимостей, производных и эластичности, предельного анализа и направлений его применения в экономике (построение и анализ функциональных зависимостей и решение оптимизационных задач различной сложности), понятий и методов теории игр, понятий и методов теории вероятностей, математической статистики и эконометрики с многочисленными примерами их применения. [c.8]
В. И. Романовский посвятил одну из своих работ определению связей между статистикой и теорией вероятности 42 По его мнению, основное значение теории вероятностей для статистики состоит в том, что она строит на немногих простых и априорных, соображениях отвлеченное понятие о вероятности, играющее роль предельного понятия для суждения об относительной частости и дает затем ряд строгих математических теорем, являющихся основанием для объяснения устойчивости относительных частностей. [c.280]
Предполагается, что студенты, изучающие эконометрику, уже прослушали базовые курсы по высшей математике, теории вероятностей и математической статистике, микро- и макроэкономике. Однако опыт показывает, что многим начинающим изучение вводного курса эконометрики необходимо восстановить знания основных положений теории вероятностей и математической статистики, без которых невозможно понимание излагаемого материала. Именно на ликвидацию пробелов в этой области направлены первая и вторая главы данного пособия. При этом особое внимание уделяется экономическим приложениям рассматриваемых понятий. [c.7]
В связи с тем, что основой математического инструментария эконометрики является теория вероятностей и математическая статистика, в главе 2 представлен краткий обзор ее основных понятий и результатов. Следует иметь в виду, что данный обзор не может заменить систематического изучения соответствующего вузовского курса. [c.3]
В этой главе приводится краткий обзор основных понятий и результатов теории вероятностей и математической статистики, которые используются в курсе эконометрики. Цель этой главы — напомнить читателю некоторые сведения, но никак не заменить изучение курса теории вероятностей и математической статистики, например, в объеме учебника [12]. [c.24]
Описание риска базируется на математической базе теории вероятностей и теории статистики. Основными понятиями при этом являются вероятность, функции распределения, плотности вероятностей, математическое ожидание, дисперсия. [c.222]
Автор весьма подробно показывает широкие возможности практического использования познанных статистических закономерностей. В книге детально исследуются законы вариации. В связи с этим автор напоминает читателю основн ые сведения из теории вероятностей и математической статистики. Он Приводит понятия вероятности, основные теоремы сложения и умножения вероятностей, законы распределения вероятностей. Автор показывает огромную практиче- [c.238]
В этом приложении приводится краткий обзор основных понятий и результатов теории вероятностей и математической статистики, которые используются в основном тексте книги. Приложение носит справочный характер и не может служить заменой стандартному курсу теории вероятностей и математической статистики. [c.509]
Аксиоматический метод математические доказательства элементы, множества, отношения, отображения числа матрицы комбинаторика конечные и бесконечные множества основные идеи математического анализа математика случайного элементы теории вероятностей основные понятия математической статистики роль математики в гуманитарных науках теоретические представления об информационных процессах в природе и обществе понятие информации процессы ее порождения, поиска, передачи и приема интерпретация сообщения социальная информация и ее особенности информационные процессы в культуре культурная коммуникация информатизация общества и [c.102]
Лит. Крамер Г., Математические методы статистики, пер. с англ., М., 1948 Ф е л л е р В., Введение в теорию вероятностей и се приложения, 2 изд., т. 1 — 2, М., 1967 Прохоров К). В., Розанов Ю. А., Теория вероятностей, М., 1% i, Колмогоров А. Н., Основные понятия теории веромтностей, 2 изд., М., 1974 К е и н Э., Экономическая статистика и эконометрия, вып. 1, М., 1977. [c.111]