Производная неявной функции

Производная неявной функции 127  [c.127]

Производная неявной функции  [c.127]

Производная неявной функции от одной переменной  [c.296]


Таким образом, tga (и, следовательно, наклон касательной К-см. рис. 7.8), равный А (, °), может быть найден как отношение (первых) частных производных функции Дх,, х2) в точке (х,°, Xj0), взятое со знаком минус, т.е. без использования явного выражения А(х,). Выписанная формула называется производной неявной функции Xj = Л(х,). Эта формула играет важную роль в микроэкономическом анализетеории потребительского поведения и в теории фирмы). Производная неявной функции х, = g(x2) выписывается аналогично (числитель и знаменатель меняются местами).  [c.110]

Приведите формулу производной неявной функции.  [c.119]

По правилу дифференцирования неявных функций найдем производные по рк  [c.202]

Выше было рассмотрено дифференцирование явных функций и параметрических функций. Рассмотрим дифференцирование неявной функции, заданной уравнением F(x,y] = 0. Для нахождения производной функции у, заданной неявно, нет нужды искать явное выражение функции у = /(ж) нужно просто продифференцировать обе части уравнения, рассматривая у как функцию от ж, а затем из полученного уравнения найти производную у.  [c.127]


Теорема однако не дает представления о способе вычисления производной от неявной функции у х. А это очень важно в социально-экономических исследованиях, так как использование производной позволяет более детально исследовать функцию определить интервалы ее возрастания и убывания, найти точки минимума и максимума. Поэтому ниже приводится простой прием, с помощью которого можно легко находить производную от неявной функции.  [c.298]

Пусть выполнены условия теоремы. Согласно определению неявной функции у = /(ж) удовлетворяет уравнению (14.3). Левая часть этого уравнения представляет собой сложную функцию от ж, которая тождественно равна нулю. Тогда и производная ее по х также есть нуль. Воспользовавшись формулой (14.1) дифференцирования сложной функции, получаем  [c.298]

Если функция F(x,y] имеет еще и непрерывные производные второго порядка, то выражение, стоящее в равенстве (14.6) справа, может быть продифференцировано по ж, следовательно существует и вторая производная у"ж от неявной функции у.  [c.299]

Оно задает в виде неявной функции зависимость объема производства, выбираемого монополистом, от величины предельных издержек у" = у(с). В предположении существования производных обратной функции спроса р(у и функции у (с), продифференцируем по  [c.483]

Производная неявно заданной функции  [c.123]

Иррациональные числа, а также возникшие по ходу развития математики такие понятия, как бесконечность, предел, явились следствием признания невозможности наглядно выразить кардинальные свойства фигуры большей размерности (например, прямоугольника) в понятиях фигуры меньшей размерности (например, отрезка), и желания, закодировав эту невозможность названиями, открыть путь к описанию и исследованию других последующих из доступных осознанию количественных свойств реальности. Свойство ее изменчивости (в частности, такое кардинальное для управленца понятие, как изменение во времени — движение) учитывается с помощью понятий переменная величина, функция, а также производная и интеграл, связывающие величину количества с характером его изменения в окрестности этой величины, дающих возможность получить аналитическое описание многих физических законов движения (например, в виде дифференциальных уравнений). Оценки более тонких количественных отношений реальности отражаются в таких разделах математики, как, например, вариационное исчисление, где независимой переменной является уже не число, а функция. Оценки качества количественных отношений — в таких понятиях, как явные и неявные зависимости, корректность, грубость и т.д.  [c.261]


Дискретный принцип максимума получается почти по такой же схеме, но вместо дифференциальных уравнений в выкладках участвуют их разностные аппроксимации. И вот здесь появляется упомянутое реальное следствие дискретной теории разностное уравнение для сопряженного уравнения является следствием того или иного выбора аппроксимаций для прямого уравнения и для интеграла в тождестве Лагранжа. Разностная аппроксимация уравнения в вариациях также однозначно определяется выбором аппроксимации исходного уравнения, но это не так важно, так как в вычислительных методах обычно это уравнение не интегрируется. Эту аппроксимацию сопряженного уравнения "мы будем называть согласованной с аппроксимациями исходного уравнения и интеграла в том смысле, что для конечно-разностных решений Sz и ф, полученных по согласованным аппроксимациям соответствующих уравнений, алгебраически точно выполняется тождество Лагранжа (тоже в соответствующей аппроксимации). Это и есть то единственное практическое следствие, которое автор смог извлечь из теории дискретного принципа максимума и которого в своих вычислениях никогда не использовал ни в явной, ни в неявной формах. Автор всегда выбирал для исходного и сопряженного уравнений независимые аппроксимации, причем сопряженное обычно интегрировалось более грубо, с большим шагом по времени. Дело в том, что использование согласованной > аппроксимации связано с определенными техническими неудобствами, необходимость преодоления которых не очевидна. Во всяком случае, автору неизвестны трудности численного решения задач оптимального управления, которые можно было бы преодолеть, используя согласованную аппроксимацию. Чтобы и здесь быть более конкретным, можно все же указать на некоторое следствие использования согласованной аппроксимации. Речь идет о получении минимума функционала с большим числом знаков. Используя для вычисления функциональной производной функцию < >, найденную по произвольной аппроксимации сопряженного уравнения, мы, разумеется, находим не точную производную, а лишь приближенную, искаженную влиянием ошибок аппроксимации. Поэтому получить минимум с очень большой точностью не удастся начиная с некоторого этапа минимизации (например, методом градиента в функциональном пространстве) мы будем в этом случав  [c.54]

В равновесии совокупный спрос должен быть равен выпуску и, таким образом, приравнивая их, мы получаем неявную зависимость между выпуском и ставкой процента. Совокупность всех комбинаций ставки процента выпуска, при которых рынок товаров уравновешен, дает нам кривую, которую мы будем называть кривой IS. Кривая IS имеет отрицательный наклон, то есть характеризуется отрицательной зависимостью между ставкой процента и выпуском. Действительно, если мы возьмем соответствующую производную, то она, в силу принятых гипотез относительно поведения функции инвестиций с учетом того, что предельная склонность к потреблению меньше единицы, имеет отрицательный знак  [c.37]

Отметим основное отличие данной реализации метода динамического программирования от схемы вычислений 15. Оно связано с использованием интерполяции функции Беллмана F (х1, х ) с узлов сетки. Этим снимается ограничение на шаг сетки в фазовом пространстве типа h=o (t), необходимое в схеме метода Н. Н. Моисеева. Вместе с тем интерполяция является источником определенных ошибок, тем более, что сетки приходится брать сравнительно грубые. Кроме того, используя интерполяцию, неявно предполагают наличие у функции Беллмана таких свойств гладкости, которых может и не быть. Известны простые примеры задач, в которых функция Беллмана разрывна, а наличие разрывов производной может считаться почти общим явлением. Схема вычислений 15 может быть (при h=0 (t2)) обоснована без всяких предположений о свойствах функции Беллмана. Что касается реализации алгоритма на ЭВМ, то в данном случае наибольшие ограничения связаны с ресурсом памяти. Вычисления в [4] тре= буют N таблиц по 30x30 величин, однако при вычислении очередной функции Fn (х1, х2-) в оперативной памяти нужно иметь только две такие таблицы.  [c.307]