Многоэтапные задачи стохастического программирования и информация

Настоящая глава посвящена не технологии математического обеспечения (в указанном смысле), а математическим вопросам, связанным с постановкой задач и построением решающих правил. В 1 вводятся некоторые вспомогательные понятия, необходимые для формальной постановки и обсуждения многоэтапных задач стохастического программирования. Параграф 2 посвящен многоэтапным стохастическим задачам с условными ограничениями. В 3 обсуждается задача -отдельного этапа многоэтапной задачи -с условными статистическими ограничениями. В 4 рассматриваются многоэтапные задачи стохастического программирования с безусловными ограничениями. В 5 изучаются многоэтапные стохастические задачи в жесткой постановке. В заключительном параграфе главы (см. 6) сравниваются различные информационные структуры и изучается роль информации при анализе многоэтапных стохастических задач.  [c.193]


В предыдущих параграфах мы рассматривали две в известном смысле крайние информационные структуры, соответствующие априорным и апостериорным решающим правилам. Многоэтапное стохастическое программирование и развивалось главным образом применительно к этим двум схемам информированности принимающего решение. К таким информационным структурам можно естественным образом, исходя из содержательных соображений, или формальным искусственным путем сводить много различных схем задания информации, которой располагает управляющий системой на том или ином этапе выбора решения. Тем не менее при анализе практических многоэтапных задач стохастического программирования часто возникают специфические проблемы, связанные с изучением роли информации и памяти на отдельных этапах выбора решений.  [c.204]

Соотношения между решающими правилами задач стохастического программирования с условными и безусловными статистическими ограничениями определяются следующей теоремой, являющейся естественным обобщением утверждения, установленного в [340] для частной линейной многоэтапной задачи управления в условиях неполной информации.  [c.198]


Постановки задач многоэтапного стохастического программирования с условными статистическими ограничениями и методы анализа решающих правил, соответствующих различной информации о состоянии системы в момент выбора решений, могут быть при некоторой модификации интерпретированы как модели и методы анализа многоуровневых иерархических систем управления, работающих в условиях неполной информации. Задание подкласса измеримых функций, из которого следует выбирать решающие правила, определяет здесь взаимодействие, координацию, управление и характер обмена информацией между звеньями одного уровня и звеньями. различных уровней. Представляется, что синтез многоэтапных и многоуровневых стохастических моделей выбора решений является основой формального аппарата качественного исследования и численного анализа сложных систем управления.  [c.196]

Подходы к постановке и анализу стохастических задач существенно различаются в зависимости от последовательности получения информации - в один прием или по частям. При построении стохастической модели важно также знать, необходимо ли принять единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз корректировать решение. В соответствии с этим в стохастическом программировании исследуются одноэтапные, двухэтапные и многоэтапные задачи.  [c.21]

Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информациимногоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами.  [c.6]


В многоэтапной модели фильтрации и прогноза на i -м этапе, исходя из накопленной до сих пор информации и принятых решений, сглаживается или экстраполируется процесс т)(/) при t=ti. При этом, однако, учитывается, что критерий качества и ограничения задачи связывают между собой все оценки j, i—1,. .., п. Многоэтапная модель фильтрации и прогнозирования описывается многоэтапной задачей стохастического программирования с жесткими или условными статистическими или условными вероятностными ограничениями. В зависимости от содержательных особенностей задачи многоэтапная модель, как и одноэтап-ная, решается в априорных или апостериорных решающих правилах или решающих распределениях.  [c.39]

В предыдущих параграфах главы мы рассматривали многоэтапные стохастические задачи с условными и безусловными, статистическими и вероятностными ограничениями. Более непосредственным и естественным обобщением классической двухэтапной модели стохастического программирования являются многоэтапные задачи, в которых исключаются невязки условий при всех реализациях случая. На каждом этапе после получения информации о реализованных случайных параметрах условий задачи и о принятом на предыдущем этапе решении вводится коррекция, гарантирующая удовлетворение ограничений при всевозможных состояниях природы oeQ. По аналогии с соответствующими одноэтапными моделями такие задачи естественно называть многоэтапными задачами стохастического программирования в жесткой постановке. В этих задачах ограничены не средние значения некоторых функционалов (как в моделях предыдущих параграфов), а значения случайных функционалов при всех реализациях oeQ.  [c.202]

Смотреть страницы где упоминается термин Многоэтапные задачи стохастического программирования и информация

: [c.55]