В предыдущих параграфах мы рассматривали две в известном смысле крайние информационные структуры, соответствующие априорным и апостериорным решающим правилам. Многоэтапное стохастическое программирование и развивалось главным образом применительно к этим двум схемам информированности принимающего решение. К таким информационным структурам можно естественным образом, исходя из содержательных соображений, или формальным искусственным путем сводить много различных схем задания информации, которой располагает управляющий системой на том или ином этапе выбора решения. Тем не менее при анализе практических многоэтапных задач стохастического программирования часто возникают специфические проблемы, связанные с изучением роли информации и памяти на отдельных этапах выбора решений. [c.204]
С одной стороны, решение выгодно принимать возможно позже. При этом может быть учтено больше полезной информации и облегчается прогноз последствий решения. Другие факторы требуют ускорить выбор решения. Запаздывание с решением приводит обычно к дополнительной затрате ресурсов. Конкретное содержание задачи определяет рациональный компромисс между противоречивыми требованиями к моменту выбора решения. Во многих случаях, конечно, содержательная постановка задачи однозначно определяет характер и даже общий вид решающих правил. До сих пор мы рассматривали решение многоэтапных задач в чистых стратегиях. Естественно, что все здесь сказанное об априорных и апостериорных решающих правилах можно применительно к случаю, когда многоэтапные задачи решаются в смешанных стратегиях, повторить и для априорных и апостериорных решающих распределений. Как видно, однако, из материалов гл. 5, практические "приемы построения решающих распределений связаны с существенно более трудоемкой работой, чем вычисление соответствующих решающих правил. Во всех случаях, когда решение многоэтапных задач сводится к анализу соответствующих одноэтапных стохастических задач, вычисление оптимальных смешанных стратегий проводится согласно рекомендациям гл. 5. [c.195]
Соотношения между решающими правилами задач стохастического программирования с условными и безусловными статистическими ограничениями определяются следующей теоремой, являющейся естественным обобщением утверждения, установленного в [340] для частной линейной многоэтапной задачи управления в условиях неполной информации. [c.198]
Подходы к постановке и анализу стохастических задач существенно различаются в зависимости от последовательности получения информации - в один прием или по частям. При построении стохастической модели важно также знать, необходимо ли принять единственное решение, не подлежащее корректировке, или можно по мере накопления информации один или несколько раз корректировать решение. В соответствии с этим в стохастическом программировании исследуются одноэтапные, двухэтапные и многоэтапные задачи. [c.21]
Обоснованы вероятностные постановки задач текущего и календарного планирования производственной программы НПП в условиях неполноты технико-экономической информации, обеспечивающие надежность плановых решений. Многоэтапная стохастическая задача оптимизации отражает адаптивный характер процедур принятия плановых решений и повышает реализуемость производственной программы предприятия. [c.215]
Построение платежной функции игры в том или ином виде отражает информацию, которой располагает принимающий решение. Игровой подход к многоэтапным стохастическим задачам приводит к динамической игре, в которой шаг за шагом накапливается информация об условиях взаимосвязанных задач, подлежащих решению. Выбор решения на каждом ходе должен оптимизировать платежную функцию многоходовой игры, гарантируя, естественно, возможность завершения игры— удовлетворения условиям игры при допустимых случайных ситуациях, которые могут возникнуть в процессе игры. [c.15]
Модели стохастического управления, в которых закон управления или механизм управления учитывает последовательный характер накопления информации и может уточняться в процессе управления, описываются многоэтапными стохастическими задачами. Целевой функционал динамической задачи зависит от состояния системы на конечном (.S-M) этапе или от всей траектории системы. Область определения задачи отдельного этапа описывается жесткими или условными статистическими или условными вероятностными ограничениями. Оптимальные решающие правила или решающие распределения этих задач определяют законы управления или механизмы стохастического управления. [c.46]
Постановки задач многоэтапного стохастического программирования с условными статистическими ограничениями и методы анализа решающих правил, соответствующих различной информации о состоянии системы в момент выбора решений, могут быть при некоторой модификации интерпретированы как модели и методы анализа многоуровневых иерархических систем управления, работающих в условиях неполной информации. Задание подкласса измеримых функций, из которого следует выбирать решающие правила, определяет здесь взаимодействие, координацию, управление и характер обмена информацией между звеньями одного уровня и звеньями. различных уровней. Представляется, что синтез многоэтапных и многоуровневых стохастических моделей выбора решений является основой формального аппарата качественного исследования и численного анализа сложных систем управления. [c.196]
В настоящем параграфе на примере специальной многоэтапной стохастической задачи достаточно общего вида будет проиллюстрирована роль информации о ходе процесса выбора решений и памяти- о принятых решениях. [c.204]
Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информации — многоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами. [c.6]
В многоэтапной модели фильтрации и прогноза на i -м этапе, исходя из накопленной до сих пор информации и принятых решений, сглаживается или экстраполируется процесс т)(/) при t=ti. При этом, однако, учитывается, что критерий качества и ограничения задачи связывают между собой все оценки j, i—1,. .., п. Многоэтапная модель фильтрации и прогнозирования описывается многоэтапной задачей стохастического программирования с жесткими или условными статистическими или условными вероятностными ограничениями. В зависимости от содержательных особенностей задачи многоэтапная модель, как и одноэтап-ная, решается в априорных или апостериорных решающих правилах или решающих распределениях. [c.39]
В предыдущих параграфах главы мы рассматривали многоэтапные стохастические задачи с условными и безусловными, статистическими и вероятностными ограничениями. Более непосредственным и естественным обобщением классической двухэтапной модели стохастического программирования являются многоэтапные задачи, в которых исключаются невязки условий при всех реализациях случая. На каждом этапе после получения информации о реализованных случайных параметрах условий задачи и о принятом на предыдущем этапе решении вводится коррекция, гарантирующая удовлетворение ограничений при всевозможных состояниях природы oeQ. По аналогии с соответствующими одноэтапными моделями такие задачи естественно называть многоэтапными задачами стохастического программирования в жесткой постановке. В этих задачах ограничены не средние значения некоторых функционалов (как в моделях предыдущих параграфов), а значения случайных функционалов при всех реализациях oeQ. [c.202]