Оценка авторегрессионных моделей

Оценка авторегрессионных моделей  [c.289]

Полезную информацию можно получить с помощью выборочных, автокорреляционной и частной автокорреляционной функций. В самом деле, вспомним, что выборочная частная автокорреляционная функция л,аст(р) есть оценка параметра рр в авторегрессионной модели р-то порядка. Отсюда делаем вывод  [c.179]


Таким образом, МНК-оценка коэффициентов регрессии оказывается несостоятельной в моделях с авторегрессионными членами и автокорреляцией ошибок. Можно показать, что оценка р, полученная из остатков МНК, также не является состоятельной  [c.270]

Если ряд стационарный, то, как можно доказать, выборочный частный коэффициент корреляции гЧЯС1(р) совпадает с оценкой обычного метода наименьших квадратов коэффициента рр в авторегрессионной модели AR(p)  [c.175]

Если удастся построить АКМ4-модель для ряда остатков, то можно получить эффективные оценки параметра р, а также несмещенные и состоятельные оценки дисперсий р с помощью обобщенного метода наименьших квадратов. Мы рассмотрим эту процедуру на простейшей (и в то же время наиболее часто встречающейся) авторегрессионной модели первого порядка.  [c.181]

Подбор инструментальной переменной не всегда является простой задачей и во многом зависит от практической ситуации. В частности, в качестве инструментальной переменной можно предложить оценку yt b которая получается в результате регрессии переменной Y на независимые переменные Xj, входящие в первоначальную авторегрессионную модель. Такая замена, однако, может привести к появлению мультиколлинеарности.  [c.290]


В ходе анализа финансовых данных любой ряд динамики, будь то процентные ставки или цены на финансовые активы, можно разбить на две компоненты, одна из которых изменяется случайным образом, а другая подчиняется определенному закону. Колебания финансовых переменных значительно изменяются во времени бурные периоды с высокой волатильностью переменных сменяют спокойные периоды и наоборот. В некоторых случаях вола-тильность играет ключевую роль в ценообразовании на финансовые активы. В частности, курсы акций напрямую зависят от ожидаемой волатильности доходов корпораций. Все финансовые учреждения без исключения стремятся адекватно оценить волатильность в целях успешного управления рисками. В свое время Трюгве Хаавельмо, нобелевский лауреат по экономике 1989 г., предложил рассматривать изменение экономических переменных как однородный стохастический (случайный) процесс. Вплоть до 1980-х гг. экономисты для анализа финансовых рынков применяли статистические методы, предполагавшие постоянную волатильность во времени. В 1982 г. Роберт Ингл развил новую эконометрическую концепцию, позволяющую анализировать периоды с разной волатильностью. Он ввел кластеризацию данных и условную дисперсию ошибок, которая завесит от времени. Свою разработку Ингл назвал авторегрессионной гетероскедастической моделью , с ее помощью можно точно описать множество временных рядов, встречающихся в экономике. Метод Ингла сегодня применяется финансовыми аналитиками в целях оценки финансовых активов и портфельных рисков.  [c.197]

При анализе временных рядов часто приходится учитывать статистическую зависимость наблюдений в разные моменты времени. Иными словами, для многих временных рядов предположение о некоррелированности ошибок не выполняется. В этом разделе мы рассмотрим наиболее простую модель, в которой ошибки образуют так называемый авторегрессионный процесс первого порядка (точное определение будет дано ниже). Как было показано ранее (глава 5), применение обычного метода наименьших квадратов к этой системе дает несмещенные и состоятельные оценки параметров, однако можно показать (см., например, Johnston and DiNar-do, 1997), что получаемая при этом оценка дисперсии оказывается смещенной вниз, что может отрицательно сказаться при проверке гипотез о значимости коэффициентов. Образно говоря, МНК рисует более оптимистичную картину регрессии, чем есть на самом деле.  [c.184]


Смотреть страницы где упоминается термин Оценка авторегрессионных моделей

: [c.306]