Характеристика методов и моделей оптимального программирования

ХАРАКТЕРИСТИКА МЕТОДОВ И МОДЕЛЕЙ ОПТИМАЛЬНОГО ПРОГРАММИРОВАНИЯ  [c.161]

Важной областью применения Э. м. является оптимальное планирование. Особенность Э. м. этой группы заключается в том, что здесь моделируется не структура сложного явления, взаимозависимости и связи его элементов, а условия определенной экономич. задачи. Обычно предметом такого моделирования являются задачи на оптимум (см. Оптимум экономический), называемые в математике экстремальными задачами. Наиболее важны здесь Э. м., решаемые методом линейного программирования. Эти модели состоят из 2 частей а) системы линейных уравнений или неравенств, в к-рых выражаются ограничения, или осн. условия задачи, характеризующие взаимозависимость между переменными (неизвестными) б) целевой функции, представляющей собой линейную форму, или функцию всех переменных, подлежащую приведению к минимуму или максимуму через целевую функцию в Э. м. входит качественная характеристика задачи — критерий оптимальности отыскиваемого решения.  [c.430]


Первые два направления могут обеспечить некоторое количественное уточнение оптимальной кратности запасов газа. Наиболее же перспективно третье направление, которое, однако, могут ограничить вычислительные возможности методов стохастического программирования. Дело в том, что задача учета в модели нескольких адаптивных характеристик в некоторых случаях реализуема только при статической постановке.  [c.75]

В приложениях стохастическое программирование используется для решения задач двух типов. В задачах первого типа прогнозируются статистические характеристики поведения множества идентичных в том или ином смысле экстремальных систем. Соответствующий раздел стохастического программирования будем называть пассивным стохастическим программированием. Модели второго типа предназначены дл построения методов и алгоритмов планирования и управления в условиях неполной информации. Будем называть соответствующий раздел стохастического программирования активным стохастическим программированием, подчеркивая этим действенную целевую направленность моделей. (В некоторых работах, например в [266], термин активное программирование истолковывается значительно уже. Под активным стохастическим программированием иногда понимают раздел пассивного программирования, в котором рациональный выбор некоторых параметров позволяет желаемым образом воздействовать на статистические характеристики оптимального плана или оптимального значения целевой функции. Поскольку, однако, терминологию в стохастическом 4  [c.4]


Анализ модели обычно производится с помощью методов и алгоритмов решения условных экстремальных задач или посредством статистич. моделирования. К числу наиболее широко применяемых в И. о. методов относится линейное программирование. Модели, приводящие к задачам линейного программирования, глубоко изучены, имеются эффективные алгоритмы и стандартные программы для ЭВМ, позволяющие решать задачи, содержащие тысячи ограничений и десятки тысяч переменных. Как правило, анализ моделей И. о. с помощью методов линейного программирования позволяет не только получить оптимальное решение, но и сделать онредел. качеств, выводы по организации операции. Эти выводы базируются на теории двойственности (объективно-обусловленные оценки) и принципах декомпозиции. Если целевая функция или ограничения модели исследуемой операции не могут быть достаточно точно описаны с помощью линейных функций, для её анализа используются др. методы математического программирования. Модели, в к-рых по смыслу операции все переменные или их часть могут принимать лишь конечное число различных значений, изучаются методами целочисленного или дискретного программирования, в частности, сюда относится большое число нла-ново-производств. операций, укладывающихся в схему т. н. задач календарного планирования и теории расписаний. Это задачи, связанные с нахождением последовательности обработки определ. числа изделий с помощью фиксированной системы машин, характеристики к-рых заданы. При этом должны быть соблюдены опродел. технологич. требования, к-рые по большей части выделяют допустимые последовательности обработки каждой детали на различных машинах. Задачи теории расписаний часто встречаются во внутризаводском планировании, особенно на мапшностроит. предприятиях. Модели, описывающие протяжённые во времени операции, цель к-рых достигается лишь с их окончанием, а осуществление может быть разделено на этапы, время начала и завершения к-рых должно быть согласовано, исследуются методами сетевого  [c.74]


СТОХАСТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ [sto hasti programming] — раздел математического программирования, совокупность методов решения оптимизационных задач вероятностного характера. Это означает, что либо параметры ограничений (условий) задачи, либо параметры целевой функции, либо и те и другие являются случайными величинами (содержат случайные компоненты). В ст. "Транспортная задача ", напр., приведена детерминированная модель. В стохастической постановке та же задача будет более близкой к реальности. Рассмотрим одно условие (заданный объем спроса) и допустим, что спрос Ъ. потребителя j — случайная величина b(w), где w — характеристика распределения этой величины. Тогда в одних случаях (при одних ее реализациях) возникает ущерб от неудовлетворенного спроса — "штраф за дефицит", в других, наоборот, потребитель получает излишний груз и, следовательно, тратит дополнительные средства на хранение и перевозку. Все это усложняет решение задачи, т.е. нахождение оптимального варианта прикрепления поставщиков к потребителям.  [c.348]