Главные некоррелированность

В последнем параграфе вводится понятие канонической корреляции. Основной идеей при этом опять будет попытка уменьшить число переменных, не потеряв при этом слишком много информации. В отличие от метода главных компонент, который работает с переменными, принадлежащими одному множеству, анализ с помощью канонической корреляции предполагает, что переменные естественным образом разбиваются на два множества. И вместо изучения обоих множеств из них будут выбираться несколько некоррелированных линейных комбинаций, которые попарно будут сильно коррелированы.  [c.443]


Вторая главная компонента v является нормированной линейной комбинацией a i,. . . , Хр с максимальной дисперсией, некоррелированной с v. To есть  [c.444]

В этой главе классическая регрессионная схема обобщается в двух направлениях. Первое связано с отказом от предположения, что независимые переменные являются неслучайными величинами. Оказывается, что при выполнении некоторых естественных условий МНК-оценка вектора неизвестных параметров сохраняет основные свойства МНК-оценки в стандартной модели. Главным условием, гарантирующим наличие этих свойств, является некоррелированность (независимость) матрицы регрессоров X и вектора ошибок е.  [c.148]

Факторный анализ — это общее название для класса методов, используемых, главным образом, для сокращения числа переменных и их обобщения. Каждую переменную выражают как линейную комбинацию латентных факторов. Аналогично, сами факторы можно выразить как линейную комбинацию наблюдаемых переменных. Факторы выделяют таким образом, что первый фактор объясняет самую высокую долю дисперсии, второй — следующую по величине долю дисперсии и т.д. Кроме того, можно выделить факторы так, что они будут некоррелированными, как это и делают в анализе главных компонент.  [c.741]


Вторая формула в (6.5) показывает, как новые факторы Y выражаются через первоначальные факторы х. Таким образом, задача состоит в нахождении новой системы таких п некоррелированных факторов 7, удовлетворяющих (6.5), что ov(7/, У/) = 0, i j. Факторы Y называются главными компонентами переменных X.  [c.83]

Имеется несколько подходов, приводящих к методу главных компонент. Поскольку наблюдения, образующие матрицу X, как правило, коррелированы между собой, можно поставить вопрос о ее реальной размерности или о числе реально независимых переменных, образующих эту матрицу. Точнее, мы рассмотрим преобразование переменных X в новое множество попарно некоррелированных переменных, среди которых первая соответствует направлению максимально возможной дисперсии, вторая — направлению максимально возможной дисперсии в подпространстве, ортогональном первому направлению, и т. д. Пусть через  [c.322]

Для устранения мультиколлинеарности может быть использован переход от исходных объясняющих переменных Х, А ,..., Х , связанных между собой достаточно тесной корреляционной зависимостью, к новым переменным, представляющим линейные комбинации исходных. При этом новые переменные должны быть слабокоррелированными либо вообще некоррелированными. В качестве таких переменных берут, например, так называемые главные компоненты вектора исходных объясняющих переменных, изучаемые в компонентном анализе, и рассматривают регрессию на главных компонентах,. в которой последние выступают в качестве обобщенных объясняющих переменных, подлежащих в дальнейшем содержательной (экономической) интерпретации.  [c.111]

В настоящей главе изучаются некоторые оптимизационные проблемы, которые встречаются в психометрике. Большинство этих задач связано со структурой собственных векторов и собственных значений ковариационной матрицы. Теоремы, встречающиеся в данной главе, можно разделить на четыре категории. Параграфы 2-7 имеют дело с методом главных компонент. Здесь применяется линейное ортогональное преобразование к р случайным величинам х, . . . , хр так, чтобы в результате получились новые переменные vi,. . . , vp, некоррелированные между собой. Первая главная компонента vi и есть нормированная линейная комбинация переменных из ж с максимальной дисперсией, вторая главная компонента v — нормированная линейная комбинация, имеющая максимальную дисперсию из комбинаций некоррелированных с v и т. д. Можно надеяться, что первые несколько компонент вносят основной вклад в разброс переменных х. На метод главных компонент можно взглянуть и по-другому предположим, что известна ковариационная матрица ж, скажем 7, и попытаемся приблизить ее другой неотрицательно определенной матрицей меньшего ранга. Если же 1 не известна, то воспользуемся оценкой S для Л, построенной по выборке из ж, и будем приближать S.  [c.442]


Необходимо все возможные комбинации, однако это не так просто. В попарном подходе можно снизить число попарных сравнений, используя периодический план. Аналогично в полнопрофильном методе можно значительно уменьшить число объектов с помощью дробного факторного эксперимента. Специальный класс факторных экспериментов, называемый ортогональной таблицей, позволяет эффективно все главные эффекты. Ортогональная таблица допускает измерение всех изучаемых главных эффектов на некоррелированной основе. Эти планы предполагают, что все взаимодействия пренебрежимо малы. Ортогональные составляют, исходя из планов полного факторного эксперимента, заменив выбранные эффекты взаимодействия, которые принимают пренебрежимо малыми, новым фактором [26]. Обычно получают два набора данных. Набор используют для вычисления функций полезности для атрибутивных уровней. Набор проверки достоверности используют для оценки надежности и достоверности.  [c.796]

Смотреть страницы где упоминается термин Главные некоррелированность

: [c.93]    [c.444]    [c.202]   
Матричное дифференциальное исчисление с приложениями к статистике и эконометрике (2002) -- [ c.443 ]