Смешанная модель авторегрессии и скользящего среднего

Если р О, то (12.2) называют моделью авторегрессии. Если же в правой части (12.2) равно нулю первое слагаемое, то говорят о модели скользящего среднего. При р > 0 и т >> О соотношения вида (12.2) называют смешанной моделью авторегрессии и скользящего среднего.  [c.363]


Смешанная модель авторегрессии и скользящего среднего 363 Смещенные оценки коэффициентов регрессии 269 Спецификация модели 405 Сплайн 328—334  [c.474]

Расширенный критерий Дики - Фуллера может применяться и тогда, когда ряд xt описывается смешанной моделью авторегрессии - скользящего среднего. Как было указано в работе [Said, Di key (1984)], если ряд наблюдений х, ..., XT порождается моделью ARIMA(p, , q) с q > 0, то его можно аппроксимировать моделью ARI(p, 1) =  [c.136]

Виды линейных стационарных моделей. Лаговый оператор. Характеристическое уравнение. Модели авторегрессии. Условия стационарности. Автокорреляционная функция и спектр процесса авторегрессии. Уравнения Юла-Уокера. Модели скользящего среднего. Условия обратимости. Автокорреляционная функция и спектр процесса скользящего среднего. Смешанные процессы авторегрессии - скользящего среднего. Интегрированные процессы. Оценивание моделей ARIMA.  [c.86]


В обшей Теории временных рядов имеется целый арсенал разнообразных "стандартных" линейных моделей, среди которых в первую очередь надо назвать такие, как MA(q), AR(p), ARMA(p, g), рассмотренные в Id. Эти модели - скользящего среднего порядка q, авторегрессии порядка р, смешанная модель авторегрессии и скользящего среднего порядка (р, q) - детально исследуются в теории временных рядов, особенно в предположении их стационарности.  [c.146]

Смотреть страницы где упоминается термин Смешанная модель авторегрессии и скользящего среднего

: [c.132]    [c.148]   
Прикладная статистика Исследование зависимостей (1985) -- [ c.363 ]