Оценка параметра метода инструментальных переменных

Найти оценки параметра (3, применяя к уравнению (8.67) обычный метод наименьших квадратов и метод инструментальных переменных.  [c.223]


Однако, как было показано выше, оценка параметра с,, равная 0,440, является смещенной. Для получения несмещенных оценок параметров этого уравнения воспользуемся методом инструментальных переменных. Определим параметры уравнения регрессии (7.43) обычным МНК  [c.327]

Изложите методику применения метода инструментальных переменных для оценки параметров модели авторегрессии.  [c.336]

Как известно (см. гл. 8), при наличии корреляции между ошибками и объясняющими переменными состоятельные оценки параметров в уравнении регрессии можно получить с помощью метода инструментальных переменных. Одна из возможных его реализаций в данном случае выглядит так. Перейдем в уравнении (13.35) к первым разностям  [c.381]

В скобках указаны стандартные ошибки параметров уравнения регрессии. Применение метода инструментальных переменных привело к статистической незначимости параметра С[ = 0,109 при переменной yf . Это произошло ввиду высокой мультиколлинеарности факторов, иyt v. Несмотря на то что результаты, полученные обычным МНК, на первый взгляд лучше, чем результаты применения метода инструментальных переменных, результатам обычного МНК вряд ли можно доверять вследствие нарушения в данной модели его предпосылок. Поскольку ни один из методов не привел к получению достоверных результатов расчетов параметров, следует перейти к получению оценок параметров данной модели авторегрессии методом максимального правдоподобия.  [c.328]


Здесь ut = t — Ae -i- Уравнение (11.9) линейно по комбинациям параметров, через которые эти параметры можно выразить. Однако (11.9) содержит лагированную эндогенную переменную и ошибки, не удовлетворяющие условиям классической модели линейной регрессии. Поэтому можно показать, что МНК-оценки коэффициентов уравнения являются несостоятельными. Для получения состоятельных оценок можно применить метод инструментальных переменных (п. 8.1), взяв, например, Xt— в качестве инструмента для yt-i, или воспользоваться методом максимального правдоподобия (глава 10).  [c.268]

Во-вторых, наличие ошибки предсказаний Qit+ приводит к корреляции между ошибкой и переменной инвестиций Iit+i в момент t+1. Из-за корреляции ошибок с объясняющими переменными применение OLS и GLS также приводит к несостоятельным оценкам. Эти проблемы имеют место для любой спецификации модели как для фиксированных, так и для случайных эффектов. Для оценки (4.10) могут быть применены несколько альтернативных процедур, связанных с использованием инструментальных переменных, среди которых метод инструментальных переменных, обобщенный метод инструментальных переменных, обобщенный метод моментов (GMM). Среди перечисленных методов обобщенный метод моментов является единственным, который обеспечивает эффективные оценки параметров, поэтому предпочтение было отдано методу GMM ( Verbeek M., 2000 Baltagi В. Н., 1995).  [c.61]

Смотреть страницы где упоминается термин Оценка параметра метода инструментальных переменных

: [c.236]    [c.327]    [c.215]    [c.504]    [c.320]   
Эконометрика (2002) -- [ c.196 , c.198 ]