Разностные методы решения обыкновенных дифференциальных уравнений

В силу выпуклости существует точка и, -+ /, 6 U такая, что /<+i/l = = f[x(tf), Ui+vJ. Обычные оценки, используемые при обосновании методов численного интегрирования обыкновенных дифференциальных уравнений, позволяют утверждать, что решение разностной системы хм = х(- -ч/(х , ц мл/,) аппроксимирует траекторию x (t), х( — х (t СЧ, причем постоянная С зависит только от длины интервала Т и константы условия Липшица для функции / (х, и) f(x, и) — f(x, uJl x — х (это условие, разумеется, нужно оговорить). Теперь следует ослабить формулировку разностной задачи (7), потребовав выполнения условий х( G, XN — Х1 лишь с точностью до g. (или с точностью до /т), с тем, чтобы построенная выше разностная траектория могла считаться допустимым решением разностной задачи (7), а для решения этой задачи, существование которого следует из элементарных теорем о достижении минимума в конечномерных пространствах, получаем оценку минимизируемого функционала сверху  [c.124]


В основу понятия обобщенного решения могут быть положены самые различные подходы. Это интегральные законы сохранения, метод искусственной вязкости, способ предельного перехода в разностных аппроксимациях, аппарат теории обобщенных функций, понятие потенциала решения, а также другие схемы [Рождественский и др., 1978 Годунов, 1979]. Так, авторы [Васильев и др., 1987] при рассмотрении одномерного варианта (га = 1) задачи (4.4.3)-(4.4.7) для определения обобщенного решения использовали свойство эквивалентности на гладких (классических) решениях дифференциальной системы, построение которой базируется на использовании широко известного аппарата метода характеристик. Суть этого подхода заключается в диагонализации матрицы А системы (4.4.3) с помощью линейного невырожденного преобразования переменных х в инварианты Римана. После такого преобразования в каждом из уравнений системы участвуют частные производные по s и t лишь одной инварианты Римана, что позволяет рассматривать дифференциальный оператор инвариантной системы как п -мерный вектор обыкновенных производных вдоль соответствующих характеристик (аналог производной по направлению). К сожалению, возможности использования данного понятия обобщенного решения по существу  [c.335]