По возможности наиболее точная оценка центра распределения по выборке случайных величин исключительно важна, так как центр распределения используется в формулах для вычисления дисперсии, среднеквадратичного отклонения, коэффициента асимметрии и эксцесса распределения. Некорректное определение центра влечет за собой ошибки в определении всех этих величин. [c.59]
Оценку центра распределения по выборке можно проводить различными способами. Не зная априорно закона распределения случайной величины, невозможно заранее указать наиболее приемлемый способ. К тому же, некоторые из этих оценок чувствительны к наличию аномальных значений в выборке (промахов). [c.59]
Проверка статистических гипотез о равенстве средних. При исследовании часто возникает вопрос о сравнении центров распределения двух или более случайных величин. Здесь важно выяснить, являются ли полученные статистические оценки математического ожидания по разным выборкам оценкой одного и того же математического ожидания для определенного закона распределения F(x). [c.60]
Анализ результатов позволяет сделать заключение о том, что выборочная оценка энтропии случайной величины X, распределенной по нормальному закону с параметрами (0,1), имеет в свою очередь нормальное распределение. Данное утверждение можно отнести к исходному нормальному распределению с любыми параметрами X и S, так как смещение центра распределения не меняет значение выборочной оценки энтропии, а произвольное изменение значения среднего квадратического отклонения S при изменении значения величины интервала группирования выборки (т. е. изменении систем отсчета) и том же количестве интервалов разбиения также не влияет на значение выборочной энтропии. [c.22]
Смотреть страницы где упоминается термин ВЫБОРКЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Оценки центра распределения
: [c.11]Смотреть главы в:
Статистика для трейдеров -> ВЫБОРКЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Оценки центра распределения