Оценивание параметров структурной модели

ОЦЕНИВАНИЕ ПАРАМЕТРОВ СТРУКТУРНОЙ МОДЕЛИ  [c.193]

Оценивание параметров структурной модели.  [c.31]


Следующим этапом является оценивание структурных параметров. Для структурных моделей, построенных на основе р-ко-эффициентов, оценка ру производится не методом наименьших квадратов, а с помощью такого приема. Запишем уравнение (4.12) следующим образом  [c.220]

Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные (у) одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений называется также структурной формой модели. В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.  [c.180]

Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод наименьших квадратов (ДМНК).  [c.200]


В отличие от метода максимального правдоподобия в данном методе сняты ограничения на параметры, связанные с функционированием системы в целом. Это делает решение более простым, но трудоемкость вычислений остается достаточно высокой. Несмотря на его значительную популярность, к середине 60-х годов он был практически вытеснен двухшаговым методом наименьших квадратов (ДМНК) в связи с гораздо большей простотой последнего2. Этому способствовала также разработка в 1961 г. Г. Тейлом семейства оценок коэффициентов структурной модели. Для структурной модели Г. Тейл определил семейство оценок класса А" и показал, что оно включает три важных оператора оценивания обычный МНК при К= 0, ДМНК при К= 1 и метод ог-  [c.194]

В более общем случае, когда модель состоит из одновременных уравнений, не удовлетворяющих специальным предположениям о рекур-сивности, существует простой метод оценивания — косвенный метод наименьших квадратов, но он применим лишь к точно идентифицируемым уравнениям. Состоит этот метод в использовании обыкновенного метода наименьших квадратов для оценивания параметров каждого из уравнений структурной формы в отдельности и в последующем выводе оценок структурных параметров с помощью преобразования ВП = —Г, где вместо матрицы П берется матрица оценок параметров приведенной формы П. Элементы матрицы П будут наилучшими линейными несмещенными оценками, однако это свойство не сохраняется при преобразованиях, и полученные оценки структурных параметров, по-видимому, окажутся смещенными. Тем не менее и оценки П, и оценки косвенного метода наименьших квадратов будут состоятельными. Для  [c.375]

При построении эконометрических моделей обычно преследуют одну из двух основных целей, а иногда и обе эти цели одновременно. Одна цель состоит в получении сведений о структурных коэффициентах и (или) о коэффициентах приведенной формы модели. Другая цель заключается в попытке осуществить с помощью модели условный прогноз эндогенных переменных при определенных предположениях относительно будущих значений экзогенных величин. Если интерес сосредоточен на структурных коэффициентах, то, как мы видели, следует воспользоваться состоятельными операторами оценивания, а затем на основе той же исходной информации оценить асимптотические дисперсии полученных оценок. Если же нас могут удовлетворить коэффициенты приведенной формы, то их несмещенности и состоятельности можно достичь, применяя обыкновенный метод наименьших квадратов к каждому из уравнений в отдельности оценки выборочных дисперсий для полученных значений коэффициентов формируются при этом автоматически. Такой метод можно усовершенствовать. Например, когда имеются опасения, что одновременные возмущения в различных уравнениях приведенной формы окажутся коррелированными, можно воспользоваться процедурой Зельнера (см. гл. 7), позволяющей оценивать несколько внешне не связанных друг с другом уравнений. Однако ни обыкновенный метод наименьших квадратов, ни метод Зельнера не налагают каких-либо ограничений на параметры приведенной формы, в то время как такие ограничения неявно существуют и они воплощены в системе уравнений, связывающей параметры структурной и приведенной формы, т. е. в матрице П = —В-1Г. Клейн полагает, что если спецификация модели в ее структурной форме выбрана правильно, то более эффективными оценками параметров матрицы П будут оценки, найденные посредством оценок В и Г матриц В и Г структурных коэффициентов2, т. е. он предлагает находить оценку матрицы П как П = —В"1 1. Если для оценивания В и Г применялся состоятельный метод оценивания, то и оценка П- тоже будет состоятельной. При этом хотелось бы уметь формировать и оценки выборочных дисперсий элементов матрицы П. Точнее эта задача может быть сформулирована  [c.400]


Кроме того, коэффициенты приведенной формы могут быть оценены г тем непосредственного применения обыкновенного метода наименьш квадратов к каждому уравнению приведенной формы в отдельное Этот метод не позволяет принять в расчет какие-либо ограничения коэффициенты приведенной формы, а следовательно, и на структурн коэффициенты модели, т.е. на элементы матриц В и Г. Он известен к метод наименьших квадратов без ограничений. Заметим, что метод нг меньших квадратов без ограничений и обыкновенный метод найме ших квадратов — два разных метода оценивания параметров при]  [c.421]

Коэффициенты приведенной формы модели могут быть состоятельно оценены методом наименьших квадратов. Эти оценки могут быть использованы для оценивания структурных параметров (косвенный метод наименьших квадратов). При этом возможны три ситуации структурный коэффициент однозначно выражается через коэффициенты приведенной системы, структурный коэффициент допускает несколько разных оценок косвенного метода наименьших квадратов, структурный коэффициент не может быть выражен через коэффициенты приведенной системы. В последнем случае соответствующее структурное уравнение является неидентифицируемым. Неидентифицируемость уравнения не связана с числом наблюдений.  [c.229]

Смотреть страницы где упоминается термин Оценивание параметров структурной модели

: [c.4]    [c.195]    [c.349]    [c.352]