Принцип максимума Л. С. Понтрягина — необходимое условие оптимальности управления [c.42]
Принцип максимума" Понтрягина определяет математические условия, необходимые для того, чтобы управление оказалось оптимальным, причем без предварительного определения оптимальной траектории, а путем последовательного регулирования данного процесса. [c.185]
Принцип максимума Понтрягина определяет математические условия, необходимые для того, чтобы управление оказалось оптимальным. Задачи экономики, основанные на математической теории оптимальных процессов, намного сложнее. Это выражается хотя бы в том, что экономические процессы характеризуются не тремя, а огромным числом фазовых координат, многими управляющими параметрами и т. д. [c.19]
Таким образом, задача поиска оптимального управления сводится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оптимальности. Это, свою очередь, сводится к нахождению таких z, jt, А/, удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максимума Понтрягина. [c.203]
Необходимое условие оптимальности для задачи оптимального управления (принцип максимума Понтрягина). Пусть функции F(x, й, t), /y (х, и , t), / = 1, 2. .... п непрерывно дифференцируемы. Если (х (t), и (t)] — оптимальное решение задачи минимизации (9.87) — (9.90), то существует непрерывная вектор-функция ty (Q = tyi(t) tyl(t) . .. i (/) такая, что функции x (t), u (t), ty (t) удовлетворяют следующим условиям <% дН [c.243]