Ковариационная матрица нормальных величин

Стохастическое описание. Такая форма описания используется, в тех случаях, когда факторам неопределенности z = (zi,z2,...) можно приписать вероятностный, случайный характер. Случайные факторы z формализованы, если задана их плотность вероятности. Наиболее подробно исследован в научно-технической литературе случай нормального распределения a(z)e yV(M(z),D(z)), которое полностью определяется вектором математического ожидания A/(z) и ковариационной матрицей D(Z). Некоторые специалисты рассматривают ситуацию, когда известна плотность вероятности, как детерминированную, ввиду того, что плотность вероятности является исчерпывающей характеристикой случайных величин.  [c.46]


Нормальный закон распределения n-мерной случайной величины (n-мерного случайного вектора) X = (Х, Х ,..., Х ) характеризуется параметрами, задаваемыми вектором средних а = (a, ai,...,a и ковариационной матрицей X = (°у )пхп гДе < = M[(Xt - a, )(Xj - а,)].  [c.40]

Предполагая, что наблюдаемая п — мерная случайная величина х = (хг,. .., хп) подчинена нормальному распределению. /V (О, С) с нулевым средним и ковариационной матрицей С = (Су), i = 1,. .., п, j = 1,. .., п,  [c.265]

Заметим, что для любого множества начальных ожиданий рыночная равновесная цепа является суммой двух нормально распределенных случайных величин. Коэффициенты в этой линейной функции являются, в свою очередь, функциями коэффициентов в правилах прогнозирования трейдеров, задаваемых уравнением (-1.2) (/3 — вектор коэффициентов). В этой экономике наблюдаемыми (ex ante или ex post) величинами являются случайные величины d, Р к fl — все нормально распределенные со следующей ковариационной матрицей  [c.133]


Комплексные сценарии, включающие в себя изменения волатильностей и корреляций, используются при стресс-тестировании показателя VaR (stressing VaR), которое иногда выделяют в самостоятельную разновидность стресс-тестирования. Согласно распространенным рекомендациям, при расчете VaR ковариационным методом или методом Монте-Карло стресс-тестирование следует проводить, варьируя в различных комбинациях входные параметры — волатильности и корреляции. Однако не следует забывать, что дельта-нормальный метод расчета VaR основан на линейной аппроксимации чувствительности цен инструментов к относительно небольшим (в пределе — к бесконечно малым) изменениям факторов риска . Для инструментов с нелинейными функциями ценообразования погрешность такого приближения будет тем больше, чем сильнее реальное изменение фактора риска отличается от того, которое предполагалось при оценке чувствительности. В случае стресс-тестирования речь идет именно о внезапных и очень больших по величине скачках факторов риска, поэтому необходимо либо специально оценивать линейную чувствительность к изменениям такого масштаба, либо проводить стресс-тестирование только корреляционной, а не ковариационной матрицы.  [c.595]

Смотреть страницы где упоминается термин Ковариационная матрица нормальных величин

: [c.59]    [c.369]    [c.212]   
Матричное дифференциальное исчисление с приложениями к статистике и эконометрике (2002) -- [ c.317 , c.319 ]