Сетка в фазовом пространстве

Перейдем к вопросам сходимости в вычислительной схеме Н. Н. Моисеева. Основное осложнение связано с тем, что теперь в разностной задаче (7) точки х могут принимать лишь дискретные значения а ., принадлежащие сетке 5. Поэтому в принципе может оказаться, что ни для какой пары точек из соседних сеток я., ж +1 не удастся построить соединяющей их траектории (1) на малом интервале [tt, t +1]. В этом случае разностная задача просто не имеет решения. Чтобы избежать этой опасности, следует наложить определенные ограничения на /г-шаг сетки по фазовым координатам. Кроме того, нужно гарантировать разрешимость элементарной операции. Эти вопросы исследовались в работах [56], [37]. Разрешимость разностной задачи и сходимости численного решения к решению задачи (1)—(5) была доказана в предположении некоторых свойств непрерывности функции Беллмана решаемой задачи. Однако для практики вычислений более существенным является другое условие шаги сетки hr по r-й компоненте фазового пространства должны быть связаны с шагом сетки по времени т соотношением ftr=T1+P>-, где рг 1 — некоторые числа, зависящие от строения области достижимости за малое время т для системы (1). Напомним, что областью достижимости D (Z, t) называется совокупность правых концов траекторий системы x=f (х, и), х (0)=z при произвольных измеримых и (t), и ( ) U, О t т. В работе автора [93] те же вопросы были решены только с одним предположением h—0 (t2). При этом под элементарной операцией следует понимать решение следующей простой геометрической задачи, являющейся аппроксимацией дифференциальной на малом интервале времени. Для расширенной системы (1) (пополненной уравнением x°=f(x, u), х° (0)=0) строится в каждой точке х область x- -tf (х, U) (если / (х, U) не выпукла, следует заменить ее выпуклой оболочкой). Далее эта область расширяется присоединением всех сфер радиуса ft2 с центрами в ж+т/ (x1U), Полученную область в пространстве х°, х1,.. ., хп обозначим DT (х), а ее проекцию на гиперплоскость х1, а 2,. ... . ., х" — jD (х). Если шаги сеток А=ста, то при определенном соотношении между с и С можно утверждать, что для любой точки xlj 5" найдется хотя бы одна точка xj.+i 5 41 такая, что  [c.125]


Медленная сходимость. В 15 было выяснено, что шаг h сетки в фазовом пространстве должен быть существенно меньше шага по времени т, например, А=0 (т2). Одна итерация метода локальных вариаций смещает исходную траекторию на расстояние h и для того, чтобы добраться до оптимальной траектории, следует совершить не менее О (-Л = О f- -j О (N2) таких  [c.130]

Сетка в фазовом пространстве 121,  [c.486]

На интервале [О, Т] вводится счетная сетка, для простоты равномерная t0 = Q. fj,, ,,,tN=T ti = ii t — T/N. В каждой точке t определяется экземпляр сетки в фазовом пространстве, покрывающий область G с некоторой густотой, определяемой шагом h в фазовом пространстве совокупность точек i-й сетки ж. будем обозначать S1. Заметим, что индекс /, который можно считать, например, п -мерным мультииндексом, принимает по числу узлов  [c.121]

Метод локальных вариаций. Метод, разработанный Ф. Л. Чер-ноусько, представляет собой, видимо, наиболее широко используемую форму метода вариаций в фазовом пространстве. Метод носит итерационный характер, каждая итерация является переходом от некоторой траектории к близкой к ней, лучшей по величине минимизируемого функционала. Пусть х (t) — некоторая траектория системы я=/, удовлетворяющая краевым условиям х (0) = =Х0, х (Т)=Хг и фазовым ограничениям. Эту траекторию можно представить последовательностью точек на временнбй сетке  [c.127]


Отметим основное отличие данной реализации метода динамического программирования от схемы вычислений 15. Оно связано с использованием интерполяции функции Беллмана F (х1, х ) с узлов сетки. Этим снимается ограничение на шаг сетки в фазовом пространстве типа h=o (t), необходимое в схеме метода Н. Н. Моисеева. Вместе с тем интерполяция является источником определенных ошибок, тем более, что сетки приходится брать сравнительно грубые. Кроме того, используя интерполяцию, неявно предполагают наличие у функции Беллмана таких свойств гладкости, которых может и не быть. Известны простые примеры задач, в которых функция Беллмана разрывна, а наличие разрывов производной может считаться почти общим явлением. Схема вычислений 15 может быть (при h=0 (t2)) обоснована без всяких предположений о свойствах функции Беллмана. Что касается реализации алгоритма на ЭВМ, то в данном случае наибольшие ограничения связаны с ресурсом памяти. Вычисления в [4] тре= буют N таблиц по 30x30 величин, однако при вычислении очередной функции Fn (х1, х2-) в оперативной памяти нужно иметь только две такие таблицы.  [c.307]

Смотреть страницы где упоминается термин Сетка в фазовом пространстве

: [c.130]    [c.305]   
Приближенное решение задач оптимального управления (1978) -- [ c.121 , c.133 , c.305 ]