Непрерывная функция

Таким образом, нормативы потребности МТР на ремонтно-профилактические работы также являются функциями суммарно произведенного модулем целевого эффекта. Их можно представить в виде непрерывных функций несмотря на то, что ремонты и обслуживание модуля осуществляются периодически (рис. 19).  [c.50]


Зависимость отдельных составляющих целевой функции от числа пунктов разгрузки, включенных в какой-либо вариант внешнего транспортного обеспечения и условно рассматриваемых как непрерывные функции в области целочисленных величин числа пунктов разгрузки пгв, представлена на рис. 27. Как видно из рисунка, с увеличением числа пунктов разгрузки возрастают суммарные затраты на их организацию и уменьшаются транспортные расходы по доставке труб к месту работ. Следовательно, целевая функция как сумма указанных составляющих имеет экстремум при некотором значении числа пунктов разгрузки. Учитывая нелинейную зависимость функционала и его отдельных составляющих от числа вводимых пунктов разгрузки и искомых переменных, для решения поставленной задачи не могут быть применены классические методы математического программирования (например,. линейного). Как известно из курса высшей математики, математическое программирование — область математики, разрабатывающая теорию и методы решения многомерных экстремальных задач с ограничениями, т. е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных. Само название программирование взято из линейного программирования, где оно обычно обозначает распределение наилучшим образом ограниченных ресурсов для достижения поставленных целей. Следовательно, термин программирование здесь можно заменить термином планирование .  [c.145]


Если предположить непрерывность функций df/dxt (i =1,. .., п.), то границей экономической области будут поверхности, на которых  [c.93]

Что касается первого вопроса, то в качестве примера, по крайней мере, не вполне оправданного применения математики в экономике можно привести известный в анализе хозяйственной деятельности интегральный метод факторного анализа. Его разработчики, безжалостно критикуя простой и наглядный метод цепных подстановок, говорят о том, что интегральный метод "обеспечивает более высокую точность". Не вдаваясь в комментарий относительно точности в рамках ретроспективного анализа, отмечу только, что обоснованность применения интегрального метода в экономике является исключительно условной, поскольку он требует непрерывности функции, описывающей факторную связь, и бесконечно малого изменения признаков, чего в экономических явлениях часто не может быть в принципе, поскольку многие показатели изменяются дискретно.  [c.315]

Для выявления циклической составляющей динамики валютного курса статистикой также используется выравнивание по ряду Фурье, поскольку циклические колебания являются разновидностью периодических, как и сезонные. Может применяться и метод скользящей средней. Период скольжения принимают, естественно, другой, соответствующий периоду циклических колебаний. В нашем примере сглаживание целесообразно проводить по 33-месячной скользящей средней (см. рис. 15.3). Период можно определить по графику и с помощью спектрального анализа, представив ряд в виде непрерывной функции, которую можно разложить на сумму бесконечного числа гармонических функций с периодом от 0 до 2л с различной амплитудой. Спектральной плотностью функции называется величина амплитуды гармоники в зависимости о г ее периода. Чем больше амплитуда (спектр) данной гармоники, тем сильнее в использованной функции присутствуют колебания с этим периодом.  [c.664]


Свойства нет полного разложения не требуется установления очередности изменения факторов в модели носит достаточно искусственный характер, поскольку требует непрерывности функции / и бесконечно малого изменения признаков, чего в экономических исследованиях не может быть в принципе, так как многие показатели изменяются дискретно (по крайней мере, дело обстоит именно так в случае, когда речь идет о детерминированном факторном анализе, т.е. анализе в отношении единичного объекта, а не совокупности объектов в качестве примера можно привести показатель численности работников на заводе).  [c.103]

Совокупность исследуемых исходных данных должна быть однородной и математически описываться непрерывными функциями.  [c.114]

A5/S (см. также следующий раздел). Эту характеристику по /-му ресурсу можно задавать величиной Е] — математического ожидания недопоставки АР/Р°. В случае непрерывной функции эластичности ф/ при известной плотности распределения (k.S ISj) случайной величины A5 75j она выражается так  [c.29]

Если зависимость общей выручки от объема продукции представлена непрерывной функцией TR = f(Q), то  [c.98]

В предположении непрерывности функции /(/г) получим  [c.107]

Дифференциальное исчисление. Позволяет находить максимальные и минимальные значения для математически заданных непрерывных функций (и некоторых других).  [c.187]

Один из методов нахождения экстремума рассматриваемой непрерывной функции состоит в нахождении частных производных  [c.44]

Я/. =... = Rfi, < Я/(,+1 = Я/г+1 < < Я/ 1+Л1 = Я/ 1+ з. (21) Предполагается, также, что все Ri( — непрерывные функции и К, -. <. R/. доп. 1  [c.124]

Предположим, что м(-) - монотонная непрерывная функция  [c.8]

Примем сначала, что (Y) кусочно-линейная непрерывная функция  [c.12]

Колмогоров А.Н. О представлении непрерывных функций нескольких  [c.99]

Рассмотрим непрерывные функции стимулирования следующего  [c.48]

Известно, что при монотонных непрерывных функциях затрат про-  [c.119]

Непрерывные процессы описываются непрерывными функциями. Для описания функционирования системы удобнее использовать не аналоговое, а дискретное представление. При этом функцию ЧМС дискретизируют а) по уровню, представляя процесс конечным числом разрешенных уровней б) по времени — значение основных показателей в фиксированные моменты времени в) по уровню и по времени, расчленяя процесс на предельно малые целесообразные элементы, которые можно анализировать [34].  [c.37]

Обычно относительно производственной функции (2.8) делают предположение, очень удобное с математической точки зрения,— предположение о непрерывном изменении переменных х и достаточно плавном изменении выпуска при изменении затрат ресурсов. В математической форме эти предположения имеют следующий вид функция (2.8) задана при всех неотрицательных значениях составляющих вектора х (как принято говорить, на неотрицательном ортанте) и является непрерывной (или нужное число раз дифференцируемой) функцией своих аргументов. На практике ресурсы и продукция зачастую не могут меняться непрерывно — их количество дискретно и измеряется, например, в штуках. Описание с помощью переменных, принимающих любые вещественные значения, и непрерывных функций означает в таких-случаях, что число выпускаемых и потребляемых единиц достаточно велико, чтобы дискретностью МОЖНО было пренебречь.  [c.70]

Необходимо отметить, что в задачах планирования, в отличие от классических задач управления, не возникает необходимость определения непрерывной траектории функционирования. Приемлемая в практических ситуациях точность плановых расчетов обеспечивается кусочно-постоянной аппроксимацией непрерывных функций времени. При решении задачи календарного планирования нефтеперерабатывающих производств весь плановый период разбивается на ряд одинаковых временных отрезков, на каждом из которых решение представляет собойлибо постоянное по времени у-правление, либо среднюю или интегральную величину управляющих переменных. Точность и время решения задачи зависят от длительности этого отрезка времени. При прочих равных условиях его уменьшение ведет к повышению точности решения и снижению потерь оптимальности за счет повышения точности аппроксимации параметров модели. Одновременно происходит увеличение затрат времени на решение задач в связи с увеличением частоты ее решения.  [c.77]

В итоге мы получим взвешенное по вероятности HPR для каждого исхода. Возможен широкий диапазон результатов, но, к сожалению, эти результаты не непрерывны. Например, время до истечения срока не задается непрерывной функцией. До истечения срока всегда остается целое число то же верно и для цены базового инструмента. Если цена акции равна, например, 35, а минимальное изменение цены равно 1/8, то между 30 и 40 находится 81 возможное значение. Зная время, через которое мы собираемся продать опцион, можно рассчитать взвешенные по вероятности HPR для всех возможных цен на этот рыночный день. В нормальном распределении вероятности 99,73% всех результатов попадают в интервал трех стандартных отклонений от среднего, которое в нашем случае является текущей ценой базового инструмента. Поэтому нам необходимо рассчи-  [c.166]

Как тот. так и другой набор базисных функций обеспечивают возможность аппроксимации любой непрерывной функции с произвольной точностью. Основное различие между ними в способе кодирования информации на скрытом слое. Если персепторны используют глобальные переменные (наборы бесконечных гиперплоскостей) то сети радиального базиса опираются на компактные шары, окружающие набор опорных центров (Рисунок 15).  [c.86]

Затем были предложены STAR-, или гладкие TAR-модели. Такая модель представляет собой линейную комбинацию нескольких моделей, взятых с коэффициентами, которые являются непрерывными функциями времени. Примером может служить следующее уравнение модели, в котором 0 — гладкая функция, принимающая значения от 0 до 1  [c.56]

Для некоторых конфигураций количество весов явно превосходило число входных данных (наблюдений). Хотя недостаток степеней свободы делает оценку сомнительной, мы приводим здесь результаты работы 13-27-1 модели, чтобы проиллюстрировать доказанную Колмогоровым в 1957 г. и популяризованную Хехт-Нильсеном [137] теорему о существовании отображения. Эта теорема утверждает, что любая непрерывная функция может быть реализована трехслойной нейронной сетью, имеющей во входном слое т (в нашем случае 13) элементов, промасштабированных на [0,1], (2т-1-1) элементов-процессоров в единственном скрытом слое и п элементов в выходном слое. Таким образом, гарантируется, что иерархическая многослойная нейронная сеть может решить любую нелинейно отделимую задачу и может точно реализовать любое отображение га-мерных входных векторов в и-мерные выходные. При этом теорема ничего не говорит нам ни о возможности реализовать отображение посредством сети меньших размеров, ни о том, что для этого подойдут обычно используемые сигмоидные преобразования.  [c.100]

Экономико-математический словарь Изд.5 (2003) -- [ c.225 ]