Оценка параметра асимптотически эффективная

Оценки не будут эффективными (т. е. они не будут иметь наименьшую дисперсию по сравнению с другими оценками данного параметра). Они не будут даже асимптотически эффективными. Увеличение дисперсии оценок снижает вероятность получения максимально точных оценок.  [c.212]


Необходимость и способы сравнения оценок. Среднеквадратический подход. Эффективность оценок. Единственность эффективной оценки в классе с фиксированным смещением. Асимптотически нормальные оценки (АНО). Асимптотическая нормальность и ЦПТ. Скорость сходимости оценки к параметру. Асимптотический подход к сравнению оценок. Асимптотическая нормальность оценок вида Н (g(X)).  [c.31]

Содержательно несмещенность оценки означает, что при ее использовании мы не получаем систематической ошибки состоятельность оценки гарантирует приближение оценки к истинному значению параметра при увеличении объема выборки, а эффективная оценка является наилучшей в смысле минимума среднеквадратичного отклонения. Отметим, что несмещенность и эффективность — это свойства, не зависящие от объема выборки п, в то время как состоятельность является асимптотическим свойством при стремлении п к бесконечности.  [c.534]


Для проверки подобных гипотез обычно используется тест Хаусмана (Hausmaii, 1978), о котором уже шла речь в главе 8. Этот тест основан на сравнении оценок параметров /3, полученных в основной и альтернативной моделях. Как уже говорилось выше, при нулевой гипотезе оценка со случайным эффектом /3 % состоятельна и эффективна, а при альтернативной гипотезе не состоятельна. Оценка с фиксированным эффектом /3RE состоятельна как при нулевой, так и при альтернативной гипотезах. Содержательный смысл теста Хаусмана состоит в том, что при нулевой гипотезе оценки /3RE и /Зрв не должны сильно отличаться, а если справедлива альтернативная гипотеза, то различие должно быть существенным. Чтобы понять, велика ли разница /ЗрЕ — /SRE между оценками, требуется знание ковариационной матрицы V(/3FE — /Зрд) этой разности. Можно показать, что при выполнении нулевой гипотезы из эффективности оценки /3RE следует (асимптотическое) равенство  [c.378]

Получить состоятельные и асимптотически эффективные оценки параметров модели Тобит-П можно, используя метод максимального правдоподобия, при котором соответствующая функция правдоподобия максимизируется по всем возможным значениям параметров модели 9ъ9г,аъа1г. Однако чаще такую модель  [c.90]

При построении эконометрических моделей обычно преследуют одну из двух основных целей, а иногда и обе эти цели одновременно. Одна цель состоит в получении сведений о структурных коэффициентах и (или) о коэффициентах приведенной формы модели. Другая цель заключается в попытке осуществить с помощью модели условный прогноз эндогенных переменных при определенных предположениях относительно будущих значений экзогенных величин. Если интерес сосредоточен на структурных коэффициентах, то, как мы видели, следует воспользоваться состоятельными операторами оценивания, а затем на основе той же исходной информации оценить асимптотические дисперсии полученных оценок. Если же нас могут удовлетворить коэффициенты приведенной формы, то их несмещенности и состоятельности можно достичь, применяя обыкновенный метод наименьших квадратов к каждому из уравнений в отдельности оценки выборочных дисперсий для полученных значений коэффициентов формируются при этом автоматически. Такой метод можно усовершенствовать. Например, когда имеются опасения, что одновременные возмущения в различных уравнениях приведенной формы окажутся коррелированными, можно воспользоваться процедурой Зельнера (см. гл. 7), позволяющей оценивать несколько внешне не связанных друг с другом уравнений. Однако ни обыкновенный метод наименьших квадратов, ни метод Зельнера не налагают каких-либо ограничений на параметры приведенной формы, в то время как такие ограничения неявно существуют и они воплощены в системе уравнений, связывающей параметры структурной и приведенной формы, т. е. в матрице П = —В-1Г. Клейн полагает, что если спецификация модели в ее структурной форме выбрана правильно, то более эффективными оценками параметров матрицы П будут оценки, найденные посредством оценок В и Г матриц В и Г структурных коэффициентов2, т. е. он предлагает находить оценку матрицы П как П = —В"1 1. Если для оценивания В и Г применялся состоятельный метод оценивания, то и оценка П- тоже будет состоятельной. При этом хотелось бы уметь формировать и оценки выборочных дисперсий элементов матрицы П. Точнее эта задача может быть сформулирована  [c.400]


Смотреть страницы где упоминается термин Оценка параметра асимптотически эффективная

: [c.244]    [c.196]    [c.237]   
Эконометрика (2002) -- [ c.44 ]