Решение векторной задачи оптимизации методом

Таким образом, в настоящее время разработаны мощные методы решения оптимизационных задач как для статических, так и для динамических систем. Эти методы интенсивно используются в экономико-математических исследованиях. В то же время массовое использование оптимизационных методов на практике выявило их определенную ограниченность, связанную с необходимостью заранее формулировать единственный критерий. Часто проблема соизмерения различных показателей и построения единственного критерия оказывается чрезвычайно сложной, во многих случаях — неразрешимой. Это привело к принципиально новому этапу в развитии методов оптимизации — появлению методов многокритериальной (векторной) оптимизации.  [c.59]


Принятие решения в рамках указанных моделей в большинстве случаев удается свести к решению одной или нескольких задач математического программирования. В тех случаях, когда существует множество критериев оценки качества решения, как правило, осуществляется свертка векторного критерия в скалярный, используются методы лексикографической оптимизации, методы последовательных уступок или иные эвристические человеко-машинные процедуры.  [c.186]

Все эти методы объединяет общий прием поиска наилучшего решения векторный критерий тем или иным способом превращается в скалярную целевую функцию, а затем решается задача оптимизации.  [c.190]

В тех случаях, когда все локальные критерии /,, /,,..., / , с точки зрения ЛПР, имеют одинаковую степень важности, решение задачи векторной оптимизации осуществляется с использованием принципа равномерности, метода идеальной" точки, принципа справедливого компромисса, оптимальности по Парето.  [c.193]


Векторная оптимизация — комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются, в свою очередь, несводимые друг к другу скалярные критерии оптимальности подсистем, входящих в данную систему.  [c.211]

Анализ таких ситуаций осложняется, когда число объектов велико и аналогичные расчеты приходится проводить многократно, в связи с чем возникает задача автоматизации этих расчетов для лица, принимающего решения (ЛПР). Автоматизация расчетов, как правило, связана с попыткой свести многокритериальную задачу к однокритериалыюй, что соответственно приводит к ряду субъективных допущений. Обычно методы решения векторных задач оптимизации построены таким образом, чтобы выйти на одну из оптимальных точек по Парето, учитывая важность (приоритет) того или иного критерия.  [c.202]

ВЕКТОРНАЯ ОПТИМИЗАЦИЯ [ve tor optimization] — комплекс методов решения задач математического программирования, в которых критерий оптимальности представляет собой вектор, компонентами которого являются, в свою очередь, несводимые друг к другу скалярные критерии оптимальности подсистем, входящих в данную систему (напр., критерии роста благосостояния разных социальных групп в социально-экономическом планировании). При этом задача оптимизации существенно видоизменяется по сравнению с теми задачами, которые рассматриваются в большинстве статей словаря. В них она сводится к тому, чтобы, зная условия и ограничения, найти такой план, который бы максимизировал или минимизировал единственный заданный критериальный показатель. Это называется "скалярная оптимизация".  [c.43]


Другая важная проблема, тесно связанная с согласованием решений,— формирование и согласование целей (критериев оптимальности) различных уровней. При декомпозиционном подходе к построению С. о.-м. м., используемом гл. обр. для разработки моделей планирования, общая цель для всей системы задана, а целевые функции составных частей формируются исходя из этой общей цели. Методика декомпозиции целей хорошо разработана для моделей оптимального планирования, базирующихся на методах блочного программирования. При синтотич. подходе, более универсальном и реалистичном, целевые функции частей (напр., групп населения) являются исходными, заданными. Задача состоит в определении такого взаимодействия частей внутри системы и такого порядка функционирования, при к-ром вся система в целом достигла бы решения, соответствующего глобальной цели. Проблемы синтеза общем цели на основе частных ставятся и решаются в теории игр, моделях векторной оптимизации, моделях экономич. равновесия, теории принятия групповых решений, а также методами имитационного моделирования. В имитационных моделях, понимаемых достаточно широко, переменными или варьируемыми параметрами могут выступать алгоритмы принятия решений отд. подмоделями, а также алгоритмы согласования решений. Следовательно, задача состоит в нахождении такого набора алгоритмов, имитирующих функционирование экономич. системы, при к-ром получаемое общее решение наилучшим образом соответствует глобально] цели системы.  [c.558]

Работа реальных транспортных систем оценивается, как правило, не по одному показателю, а по целому набору критериев. Таким образом, показатель качества системы является векторной величиной. Современные методы оптимизации позволяют решать лишь однокритериальные задачи. Поэтому результатом решения является набор различных вариантов построения или управления транспортной системой, соответствующих различным критериям. В зависимости от реально сложившейся ситуации лицо, принимающее решения, или группа экспертов выбирают тот или другой вариант найденного оптимального решения. Таким образом, окончатель-  [c.180]

Решение задач многокритериальной или векторной оптимизации осуществляется с использованием принципов выделения главного критерия, скаляризации вектора целевых функций, равномерности, идеальной" точки, квазиоптимизации локальных критериев методом последовательных уступок, справедливого компромисса, оптимальности по Парето и ряда других.  [c.192]

СКАЛЯРНАЯ ОПТИМИЗАЦИЯ [s alar optimization] — совокупность методов решения задач математического программирования, целевая функция которых представляет собой скаляр. Большинство задач, рассматриваемых в словаре (см. Линейное программирование, Нелинейное программирование, Дискретное программирование и др.), принадлежит к этому классу. Ср. Векторная оптимизация, Многокритериальная оптимизация.  [c.330]

Смотреть страницы где упоминается термин Решение векторной задачи оптимизации методом

: [c.30]    [c.99]