Статистические оценки параметров распределения случайных величин по выборкам

Статистические оценки параметров распределения случайных величин по выборкам  [c.44]


Оценку генерального параметра получают на основе выборочного показателя с учетом ошибки репрезентативности. В другом случае в отношении свойств генеральной совокупности выдвигается некоторая гипотеза о величине средней, дисперсии, характере распределения, форме и тесноте связи между переменными. Проверка гипотезы осуществляется на основе выявления согласованности эмпирических данных с гипотетическими (теоретическими). Если расхождение между сравниваемыми величинами не выходит за пределы случайных ошибок, гипотезу принимают. При этом не делается никаких заключений о правильности самой гипотезы, речь идет лишь о согласованности сравниваемых данных. Основой проверки статистических гипотез являются данные случайных выборок. При этом безразлично, оцениваются ли гипотезы в отношении реальной или гипотетической генеральной совокупности. Последнее открывает путь применения этого метода за пределами собственно выборки при анализе результатов эксперимента, данных сплошного наблюдения, но малой численности. В этом случае рекомендуется проверить, не вызвана ли установленная закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых находится изучаемая совокупность.  [c.193]


Определение вида закона распределения случайной величины по опытным данным занимает одно из центральных мест при обработке результатов экспериментов статистическими методами. Традиционный подход при решении задачи сводится к расчету параметров эмпирического распределения, принятию их в качестве оценок параметров генеральной совокупности с последующей проверкой сходимости эмпирического распределения с предполагаемым теоретическим по критериям х2 (Пирсона), А. (Колмогорова), со2. Такой подход имеет следующие недостатки зависимость методики обработки результатов эксперимента от предполагаемого теоретического распределения, большой объем вычислений, особенно при использовании критериев со2 и %2. Некоторые новые критерии [82] не имеют удовлетворительного теоретического обоснования, а в ряде случаев, как это показано в работе [82], не обладают достаточной мощностью. Б.Е. Янковский [133] предложил информационный способ определения закона распределения. Суть его в следующем. Если имеется выборка с распределением частос-тей Р, Р2> . Рп > то энтропия эмпирического распределения должна совпадать с энтропией предполагаемого теоретического распределения при верной нулевой гипотезе, т. е. должно выполняться равенство  [c.27]

Смотреть страницы где упоминается термин Статистические оценки параметров распределения случайных величин по выборкам

: [c.104]