Ошибка выборки или, иначе говоря, ошибка репрезентативности - это разница между значением показателя, полученного по выборке, и генеральным параметром. Так, ошибка репрезентативности выборочной средней равна ег = х - ц, выборочной относительной величины гг=р-п, дисперсии едЛ = s1 - а2, коэффициента корреляции ЕГ = г - р. [c.165]
Если представить, что было проведено бесконечное число выборок равного объема из одной и той же генеральной совокупности, то показатели отдельных выборок образовали бы ряд возможных значений выборочных средних величин х,, х-,, х3,. ... относительных величин / ,, р2, ръ. ... дисперсий s, s 2, s . .., и т. д. Каждая выборка имеет свою ошибку репрезентативности. Следовательно, можно построить ряды распределения выборок по величине ошибки репрезентативности для каждого показателя для средней, относительной величины и т.д. В таких распределениях улавливается тенденция к концентрации ошибок около центрального значения. Число выборок с той или иной величиной ошибки репрезентативности может быть симметрично или асимметрично относительно этого центрального значения. При бесконечно большом числе выборок получится кривая частот, которая представляет кривую выборочного распределения. Свойства таких распределений используются для получения статистических заключений, установления вероятности той или иной величины ошибки репрезентативности. [c.165]
Фактическая ошибка репрезентативности [c.177]
Фактическая ошибка репрезентативности составляет [c.177]
После проведения выборки рассчитывают возможные ошибки выборочных показателей (ошибки репрезентативности), которые используются для оценки результатов выборки и для получения характеристик генеральной совокупности. [c.185]
Так как средняя величина имеет ошибку репрезентативности Ах, то можно считать, что итоговый подсчет в генеральной совокупности находится в пределах [c.188]
Оценку генерального параметра получают на основе выборочного показателя с учетом ошибки репрезентативности. В другом случае в отношении свойств генеральной совокупности выдвигается некоторая гипотеза о величине средней, дисперсии, характере распределения, форме и тесноте связи между переменными. Проверка гипотезы осуществляется на основе выявления согласованности эмпирических данных с гипотетическими (теоретическими). Если расхождение между сравниваемыми величинами не выходит за пределы случайных ошибок, гипотезу принимают. При этом не делается никаких заключений о правильности самой гипотезы, речь идет лишь о согласованности сравниваемых данных. Основой проверки статистических гипотез являются данные случайных выборок. При этом безразлично, оцениваются ли гипотезы в отношении реальной или гипотетической генеральной совокупности. Последнее открывает путь применения этого метода за пределами собственно выборки при анализе результатов эксперимента, данных сплошного наблюдения, но малой численности. В этом случае рекомендуется проверить, не вызвана ли установленная закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых находится изучаемая совокупность. [c.193]
Расхождение между расчетным и действительным значением изучаемых величин называется ошибкой наблюдения. В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности. [c.21]
В отличие от ошибок регистрации ошибки репрезентативности характерны только для несплошного наблюдения. Они возникают потому, что отобранная и обследованная совокупность недостаточно точно воспроизводит генеральную совокупность в целом. [c.22]
Отклонение значения показателя обследованной совокупности от его величины в генеральной совокупности называется ошибкой репрезентативности. [c.22]
Ошибки репрезентативности также бывают случайными и систематическими. Случайные ошибки репрезентативности возникают, если отобранная совокупность неполно воспроизводит совокупность в целом. Величина этих ошибок может быть оценена. [c.22]
Систематические ошибки репрезентативности появляются вследствие нарушения принципов отбора единиц из исходной совокупности, которые должны быть подвергнуты наблюдению. Для устранения ошибок наблюдения необходимо осуществить контроль полученной информации. [c.22]
Поскольку / указывает на вероятность расхождения х-х , т.е. на вероятность того, на какую величину генеральная средняя будет отличаться от выборочной средней, то это может быть прочитано так с вероятностью 0,683 можно утверждать, что разность между выборочной и генеральной средними не превышает одной величины средней ошибки выборки. Другими словами, в 68,3% случаев ошибка репрезентативности не выйдет за пределы ц. С вероятностью 0,954 можно утверждать, что ошибка репрезентативности не превышает 2ц, (т.е. в 95% случаев). С вероятностью 0,997, т.е. довольно близкой к единице, можно ожидать, что разность между выборочной и генеральной средней не превзойдет трехкратной средней ошибки выборки и т.д. Логически связь здесь выглядит довольно ясно чем больше пределы, в которых допускается возможная ошибка, тем с большей вероятностью судят о ее величине. [c.132]
Среднее значение удельных приведенных затрат для внутризаводских сетей промышленной канализации на 1 м3 часовой суммарной пропускной способности равно 99,36 руб/м3/ч. Вследствие небольшого объема представленной выборки определили, можно ли пользоваться найденным средним значением, используя для определения ошибки репрезентативности малой выборки критерий t — Стьюдента. . [c.39]
Д, , — ошибка репрезентативности выборки, зависящая от уровня доверительной вероятности [c.147]
Степень варьирования оценивается дисперсией G 2, а ошибка репрезентативности [c.147]
Разность между результатами выборочного и сплошного наблюдения называется ошибками репрезентативности. На основе применения математики можно заранее рассчитать репрезентативность выборки информации, ее соответствие генеральной совокупности. [c.481]
Предельная ошибка выборки А= Л ц. Доверительное число t показывает, что расхождение не превышает кратную ему ошибку выборки. С вероятностью 0,954 можно утверждать, что разность между выборочной и генеральной не превысит двух величин средней ошибки выборки, т.е. в 954 случаях ошибка репрезентативности не выйдет за 2ц. [c.222]
Ошибки наблюдения подразделяются на два вида ошибки регистрации и ошибки репрезентативности. [c.36]
Ошибки репрезентативности возникают при несплошном обследовании в силу того, что состав отобранной для него части единиц совокупно- [c.36]
Ошибки репрезентативности. Основные проблемы выборочного наблюдения сводятся к тому, что при его применении могут возникать определенные ошибки. Следовательно, аудиторы вынуждены учитывать риски, свойственные выборочному наблюдению, а также знать, как необходимо минимизировать эти риски. Аудиторы называют это риском ошибочного принятия (непринятия) результатов выборки. При этом в аудиторской практике различают риски первого и второго рода для тестов системы контроля и проверки верности оборотов и сальдо по счетам [там же]. [c.49]
Главные ошибки, возникающие при выборочном наблюдении, - это ошибки репрезентативности. Аудитор обязан обеспечить представительную (репрезентативную) выборку для данной совокупности. Проявляя должную тщательность в работе, он стремится точно установить и зарегистрировать в своей выборке факты хозяйственной жизни экономического субъекта, остатки по счетам, статьи баланса и т.д., но тем не менее по окончании всех [c.49]
Случайные ошибки репрезентативности. Риск (опасность) возникновения этих ошибок проистекает из собственно случайных обстоятельств (типа арифметических ошибок при отсутствии контроля, описок и т.д.). Но мы сознательно оставляем в стороне и не анализируем здесь тривиальные ошибки наблюдения, которые выражаются, скажем, в описках и которые может допустить любой ассистент аудитора, осуществляющий выборку. [c.50]
Систематические ошибки репрезентативности. Если же аудитор или его ассистент нарушают принцип случайности при отборе, то они рискуют получить систематические ошибки репрезентативности. Например, из всей совокупности дебиторской задолженности аудитор отобрал только просроченную (такой было 10%) и на основании других свидетельств установил, что половина отобранных им остатков по счетам - это задолженность безнадежная. Если на основе такой выборки аудитор будет считать, что безнадежная задолженность составляет 50% всех дебиторов проверяемого экономического субъекта, то скорее всего он глубоко ошибается (она вполне может быть на уровне, близком к 5%), поскольку уровень вероятности появления безнадежной задолженности намного выше именно в просроченной задолженности. Другими словами, аудитор рискует получить подобные погрешности в тех случаях, когда выборочная совокупность недостаточно точно воспроизводит те особенности и пропорции, которые имеются в проверяемой совокупности. [c.51]
Систематические ошибки репрезентативности - это неточности, которые аудитор может получить в процессе статистического выборочного наблюдения по вполне определенным причинам. Такие ошибки могут возникнуть как следствие преднамеренного или непреднамеренного искажения информации. Систематические ошибки репрезентативности тоже могут привести к искажению полученных результатов (как в сторону увеличения, так и в сторону уменьшения), по которым аудитор будет судить о всей проверяемой совокупности. Таким образом, в основе систематических ошибок репрезентативности лежит именно выборка, именно сам несплошной характер наблюдения. [c.51]
Ошибка репрезентативности — разница между результатами выборочного и сплошного наблюдения. [c.546]
Выборочному обследованию свойственна некоторая погрешность в сравнении со сплошным, которая органически присуща вообще любому выборочному наблюдению. Указанная погрешность или ошибка носит название ошибки репрезентативности. [c.101]
Выборочной средней и выборочной доле свойственны, как указано выше, ошибки репрезентативности. Теория выборочного метода дает возможность определить средние этих ошибок. [c.102]
Сравнивая выборочную среднюю с генеральной средней, видим расхождение — 0,8 млн. руб. (11,6—10,8 = = 0,8). Это так называемая ошибка репрезентативности случайного бесповторного отбора. [c.106]
В среднем объем строительно-монтажных работ по этим трестам составил 10,6 млн. руб. Ошибка репрезентативности — 1,0 млн. руб. [c.107]
В среднем по 16 отобранным трестам объем строительно-монтажных работ составил 10,5 млн. руб. Ошибка репрезентативности 1,1 млн. руб. [c.108]
Выше разобраны пять основных способов отбора выборочной совокупности. Каждый из них имеет свою ошибку репрезентативности. Наименьшие ошибки репрезентативности получены при механическом отборе и при случайной выборке и наибольшая — при серийном отборе. В других случаях результаты могут получиться иные. В учебниках по статистике указывается, что теоретически наименьшая ошибка должна наблюдаться при типическом, затем при механическом отборах и случайной выборке. Наибольшая ошибка — при серийном отборе. [c.108]
Практически при пользовании выборочным методом остаются неизвестными ошибки репрезентативности, так как неизвестна бывает генеральная средняя. В связи с этим необходимо теоретически определить возможную величину этой ошибки. [c.108]
Разность между показателями выборочной и генеральной совокупности называется ошибкой выборки. Ошибки выборки подразделяются на ошибки регистрации и ошибки репрезентативности. [c.22]
Ошибки репрезентативности также могут быть систематическими и случайными. Систематические ошибки репрезентативности возникают из-за неправильного, тенденциозного отбора единиц, при котором нарушается основной принцип научно организованной выборки — принцип случайности. Случайные ошибки репрезентативности означают, что, несмотря на принцип случайности отбора единиц, все же имеются расхождения между [c.22]
Разность между показателями выборочной и генеральной совокупности и будет случайной ошибкой репрезентативности. Ошибки репрезентативности [c.23]
При определении ошибки репрезентативности и объема выборки [c.16]
Как видно из приведенных расчетов, метод высшей и низшей точек довольно прост в применении. Его цель состоит в том, чтобы спрогнозировать поведение издержек при изменении деловой активности предприятия. Как и в любом прогнозе, здесь существует некоторая вероятность ошибки. Это связано с тем, что значение двух крайних показателей не всегда имеет репрезентативный характер. Поэтому из расчета следует исключать случайные, нехарактерные данные. [c.64]
Эта величина меньше предельной ошибки выборки, гарантированной с принятой доверительной вероятностью, 0,36 < 0,55. Следовательно, выборка репрезентативна по этому признаку. [c.177]
Ошибки репрезентативности, т.е. расхождения между данными выборочного наблюдения и данными всей совокупности, могут быть получены только при несплошном наблюдении, они про-изводны от самой сути выборочного наблюдения. При этом существуют и, соответственно, аудиторы должны различать две разные группы ошибок репрезентативности случайные и систематические. [c.50]
В среднем объем по этим 16 трестам к = 12,2 млн. руб. Отклонение от генеральной средней — 0,6 млн. руб. (11,6 — 12,2 — — 0,6). Ошибка репрезентативности случайного повторного итоора получилась в данном случае несколько меньше, чем в бесповторпом. [c.106]
Такая же опасность возникает при замене по какой-либо причине единиц, попавших в выборку, другими единицами (например, вместо отобранного домохозяйства, где в момент прихода интервьюера никто не открыл дверь, был проведен опрос в соседней квартире или интервьюер встретил решительный отказ участвовать в опросе и был вынужден пойти на замену домохозяйства). Как отмечает социолог В. И. Паниотто, систематические ошибки представляют собой некоторое постоянное смещение, которое не уменьшается с увеличением числа опрошенных и вызвано недостатками и просчетами в системе отбора респондентов. Если, например, для изучения общественного мнения жителей города в архитектурном управлении получить сведения о жилом фонде и из всех имеющихся в городе квартир отобрать случайным образом 400 квартир, а затем предложить интервьюерам опросить всех, кого они застанут в момент посещения в этих квартирах, то полученные данные не будут репрезентативны. Допущена систематическая ошибка более подвижная часть населения попадает в выборку в меньшей пропорции, а менее подвижная - в большей пропорции, чем в генеральной совокупности. Пенсионеров, например, можно чаще застать дома, чем студентов-вечерников. При увеличении выборки эта ошибка не устраняется если мы проведем опрос в 800 квартирах или даже во всех квартирах города (сплошной опрос), то полученные данные будут репрезентативны для населения, находящегося дома в момент прихода интервьюера, а не для всех жителей города. [c.164]