Анализ оптимального решения ЛП-задач [c.54]
Неизбежное колебание значений таких экономических параметров, как цены на продукцию и сырье, запасы сырья, спрос на рынке и т.д. может привести к неоптимальности или непригодности прежнего режима работы. Для учета подобных ситуаций проводится анализ чувствительности, т.е. анализ того, как возможные изменения параметров исходной модели повлияют на полученное ранее оптимальное решение задачи ЛП. [c.41]
Допустим, что величины запасов одного из ресурсов Ъх = 350, Ь2 = 240 и Ь = 150 (например, ДСП) увеличились на малую величину Д6, = 1. Коэффициенты bv Ь2иЬ3- это целевые коэффициенты в двойственной задаче. Согласно анализу, который мы провели выше для исходной ЛП-задачи, при изменении целевых коэффициентов существует некоторый интервал устойчивости. Если значение изменяемого целевого коэффициента остается внутри этого интервала устойчивости, то оптимальное решение не изменяется. [c.74]
ДОПОЛНЯЮЩАЯ НЕЖЕСТКОСТЬ [ omplementary sla kness] — термин математического программирования. (См. Жесткость и нежесткостъ ограничений ЛП.) Выполнение т.н. условий Д.н. определяет нахождение совместного оптимального решения сопряженных прямой и двойственной задач. Эти условия используются при анализе чувствительности оптимального решения к изменениям в исходных данных задачи и представляют собой один из способов формулирования Куна—Таккера условий. [c.94]
К М. м. в з. и. относят след, разделы прикладной математики математическое программирование, теорию игр, теорию массового обслуживания, теорию расписании, теорию управления запасами и теорию износа п замены оборудования. М а т е м а т и ч. (или оптимальное) п р о г р а м м н р о в а н и о разрабатывает теорию и методы решения условных экстремальных адач, является осн. частью формального аппарата анализа разнообразных задач управления, планирования и проектирования. Играет особую роль в задачах оптимизации планирования нар. х-ва и управления нронз-вом. Задачи планирования экономики п управления техникой сводятся обычно к выбору совокупности чисел (т. н. параметров управления), обеспечивающих оптимум пек-рой функции (целевой функции пли показателя качества решения) при ограничениях вида равенств и неравенств, определяемых условиями работы системы. В зависимости от свойств функций, определяющих показатель качества и ограничения задачи, математич. программирование делится на линейное и нелинейное. Задачи, и к-рых целевая функция — линейная, а условия записываются в виде линейных равенств и неравенств, составляют предмет линейного программа-ронпии.ч. Задачи, в к-рых показатель качества решения или нек-рые из функций, определяющих ограничения, нелинейны, относятся к н е л и н е и н о м у п р о-г р а м м и [) о н а н п го. Нелинейное программирование, в свою очередь, делится на выпуклое и невынуклое программирование. В зависимости от того, являются лп исходные параметры, характеризующие условия задачи, вполне определёнными числами или случайными величинами, в математич. программировании различаются методы управления и планирования в условиях полной и неполной информации. Методы постановки и решения условных экстремальных задач, условия к-рых содержат случайные параметры, составляют предмет с т о х а с т и ч о с к о г о п р о г р а м м и р о в а- [c.403]
Смотреть главы в:
Методы оптимизации управления для менеджеров -> АНАЛИЗ ОПТИМАЛЬНОГО РЕШЕНИЯ ЛП-ЗАДАЧ