Экстремумы выпуклых и вогнутых функций

До настоящего момента мы находили локальные экстремумы. Однако в оптимизационных задачах, с которыми встречаются в экономике (и в других дисциплинах), обычно ставится задача нахождения абсолютного экстремума. Важность выпуклых (и вогнутых) функций в оптимизационных задачах связана с тем, что локальные минимумы (максимумы) таких функций являются абсолютными. Прежде чем мы это докажем (теорема 8), обсудим более детально свойства выпуклости (вогнутости) функций.  [c.170]


Как известно, условия первого порядка показывают точки экстремума, а для нахождения собственно точки максимума требуется найти условия второго порядка. Для того чтобы условия второго порядка действительно показали точку максимума, соответствующую (3), требуется предположить вогнутость функции полезности (1) и выпуклость множества производственных возможностей.  [c.407]

Экстремумы выпуклых и вогнутых функций  [c.147]

Общая задача В.п. состоит в отыскании такого вектора х (т. е. такойточ-ки выпуклого допустимого множества), который доставляет минимум выпуклой функции J[x) или максимум вогнутой функции у(х) (рис. В.4). Для второго случая (выпуклая область допустимых значений и максимум вогнутой функции) ряд авторов предпочитают термин "вогнутое программирование". Выпуклость (вогнутость) важна тем, что гарантирует нахождение оптимального решения задачи, так как соответственно локальные и глобальный экстремумы здесь обязательно совпадают. Критериями оптимальности в первом случае могут быть, напр., издержки при различных сочетаниях факторов производства, во втором случае — величина прибыли при этих сочетаниях. Как видим, есть сходство между задачами выпуклого (вогнутого) и линейного программирования (последнее можно рассматривать как частный случай первого). Но нелинейность зависимостей делает задачу намного сложнее.  [c.57]