Регрессионная зависимость линейный нормальный

Если проверка остатков выявит, что лежащие в основе регрессионной модели допущения не выполняются, то исследователь может преобразовать переменные таким образом, чтобы эти предположения выполнялись. Такие преобразования, как логарифмирование, извлечение квадратного корня или вычисление обратных величин, могут стабилизировать дисперсию, сделать распределение нормальным и зависимость линейной. В дальнейшем мы проиллюстрируем применение множественной регрессии на примере.  [c.666]


При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т. е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели.  [c.108]

Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, х[,х2,...,хп у должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида  [c.101]


Ранее мы рассмотрели модели, в которых какие-либо независимые переменные принимают дискретные значения, например, 0 или 1, выражая некоторые качественные признаки (фиктивные переменные). Относительно зависимой переменной явно или неявно предполагалось, что она выражает количественный признак, принимая непрерывное множество значений. В частности, в нормальной линейной регрессионной модели (п. 2.3) предполагается, что ошибка имеет гауссовское распределение, откуда следует, что зависимая переменная у может принимать любые значения. В то же время довольно часто интересующая нас величина по своей природе является дискретной. Выделим несколько типичных ситуаций.  [c.318]

Модель, определяемую соотношениями и условиями (11.1), (11.2), (11.4) и (11.5), будем называть линейным (относительно оцениваемых параметров) нормальным вариантом идеализированной схемы регрессионной зависимости (идеализация, к к было отмечено, заключается в постулировании редко выполняющихся в статистической практике допущений (11.7) и (11.2)).  [c.337]

Смотреть страницы где упоминается термин Регрессионная зависимость линейный нормальный

: [c.99]    [c.82]    [c.171]   
Прикладная статистика Исследование зависимостей (1985) -- [ c.0 ]