Математическое ожидание и дисперсия непрерывных случайных величин [c.171]
Математическое ожидание и дисперсия непрерывной случайной величины f могут быть найдены следующим образом [c.61]
Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам [c.32]
Для непрерывной случайной величины, заданной своей плотностью вероятности q>(x), математическое ожидание и дисперсия равны [c.19]
Наиболее часто применяемым при решении задач статистического контроля качества распределением непрерывной случайной величины X является нормальное распределение, рассмотрением которого и ограничимся в этой главе. Как известно, нормальное распределение определяется двумя параметрами математическим ожиданием л и дисперсией о2. [c.18]
Нестационарный поток нестационарный пуассоновский поток интенсивность нестационарного пуассоновского потока дискретная случайная величина X(t r) распределение Пуассона математическое ожидание случайной величины X(t0 т) дисперсия случайной величины X(t0 r) среднее квадратическое отклонение случайной величины X(ty г) элемент вероятности появления события в нестационарном пуассоновском потоке непрерывная случайная величина T(t0) интегральный закон распределения случайной величины T(t0) дифференциальный закон распределения случайной величины T(t0) математическое ожидание случайной величины Г( 0) дисперсия случайной величины Г( 0) среднее квадратическое отклонение случайной величины Г(г0). [c.102]