Математическое ожидание случайной

Сами по себе эти величины не могут служить характеристикой распределения вероятности продолжительности работ. Они являются исходными для расчета ожидаемого времени выполнения работы 0щ. Величина tom представляет собой математическое ожидание случайной величины, которой в данном случае является продолжительность работ. Для более полной характеристики распределения случайной величины в теории вероятностей используется понятие дисперсии а . Дисперсия (рассеивание) — мера неопределенности, связанная с данным распределением квадрат отклонения случайной величины от ее математического ожидания. При большом значении дисперсии существует значительная неопределенность относительно момента завершения данной работы. Если дисперсия невелика, то имеется большая уверенность относительно момента завершения данной работы. От значений дисперсий отдельных работ зависит  [c.230]


M(J .) — математическое ожидание случайных аргументов х / — номера аргументов функции D(x) — дисперсия анализируемой функции  [c.46]

Выборочные оценки параметров нормального распределения. Точечная оценка математического ожидания случайной величины с нормальным распределением определяется величиной выборочного среднего значения  [c.60]

Математическое ожидание случайной величины есть величина неслучайная (детерминированная). Оно имеет ту же размерность, что и случайная величина и заключено между наименьшим и наибольшим возможными ее значениями.  [c.263]

М(х) - математическое ожидание случайной величины х  [c.275]

Условное математическое ожидание случайной величины Y при Х=х, т. е. Мх( Y), есть функция от х, называемая функцией регрессии или просто регрессией Y по X аналогично Му(Х) называется функцией регрессии или просто регрессией X по Y. Графики этих функций называются соответственно линиями регрессии (или кривыми регрессий) Г по Хи X по Y.  [c.38]


В силу неоднозначности статистической зависимости между Y и X для исследователя, в частности, представляет интерес усредненная по X схема зависимости, т. е. закономерность в измерении условного математического ожидания МХ(У) или M(Y/X = x) (математического ожидания случайной переменной Y, вычисленного в предположении, что переменная X приняла значение х) в зависимости от х.  [c.51]

Ложная регрессия 218 Математическое ожидание случайной величины дискретной 26, 27  [c.301]

Решение. Математическое ожидание случайной величины /  [c.117]

Математическое ожидание случайной величины 7, которая является функцией случайной величины X, может быть вычислено без нахождения плотности вероятности этой функции, то есть непосредственно по распределению случайной величины X.  [c.26]

Если обозначить математическое ожидание случайной величины 7 как ju, то справедливы следующие формулы  [c.26]

Используя условную плотность распределения можно найти математическое ожидание случайной величины 7, при условии того, что случайная величина X равна фиксированному значению х (условное математическое ожидание)  [c.92]

В качестве оценки математического ожидания случайных величин X и 7 используем средние арифметические значения по соответствующим выборкам  [c.98]

Математическое ожидание случайной величины МО(х)  [c.133]

Можно показать, что математическое ожидание случайной величины X, имею-щей логарифмически нормальное распределение, равно Е(Х) = ехр а+ —). Отсюда  [c.357]

Стохастической (вероятностной) моделью называют такую модель, в которой имеется неопределенность, т.е. когда условия (ограничения) задачи или критерий оптимизации (целевая функция) или то и другое являются какой-нибудь числовой характеристикой (например, математическим ожиданием) случайных величин.  [c.134]


Математическая сложность состоит в том, что мнения экспертов лежат в некотором пространстве объектов нечисловой природы. Общая теория подобного усреднения построена в ряде работ, в частности показано, что в силу обобщения закона больших чисел среднее мнение при увеличении числа экспертов (чьи мнения независимы и одинаково распределены) приближается к некоторому пределу, который называют математическим ожиданием (случайного элемента, имеющего то же распределение, что и ответы экспертов) [58].  [c.333]

Рассмотрим две величины детерминированную х и случайную . Будем считать, что математическое ожидание случайной величины , равно детерминированной величине  [c.69]

В качестве среднего уровня риска может быть использовано математическое ожидание случайной величины. Если функция не имеет моментов, то вместо математического ожидания используют медиану распределения. /  [c.94]

Напомним, что рассматривается случай, когда математическое ожидание случайной величины " совпадает с серединой поля допуска А.  [c.53]

Среднее значение (математическое ожидание) случайной величины — log j>(x) и есть энтропия системы X.  [c.172]

Е(х) — математическое ожидание случайной величины (события) х, очень часто называемое центром распределения, или центром рассеяния, а для нашего предмета исследования величина возможного риска  [c.393]

Поскольку в алгоритмах используются только действия сложения и вычитания и применяются они к математическим ожиданиям длительности работ, то и результат любого расчета также будет представлять собой математическое ожидание случайной величины. Ее дисперсия будет равна сумме дисперсий работ, которые участвовали в расчете. Определенные таким образом параметры проекта в силу центральной предельной теоремы теории вероятности распределены по нормальному закону. Все сказанное справедливо лишь для достаточно больших проектов, где при расчетах параметров суммируются более десятка случайных величин — длительностей работ. Стохастическая постановка управления проектами позволяет решить две специфические задачи 1) определить, с какой вероятностью проект будет завершен к плановому сроку 2) рассчитать, к какому сроку проект может быть завершен с заданной вероятностью. Для решения обеих задач используется - нормированное отклонение случайной величины, распределенной нормально, или квантиль. Если задан плановый срок Тш, то выполняется расчет  [c.131]

М(г) — математическое ожидание случайной величины г, т.е. гс OR — среднеквадратическое отклонение случайной величины г  [c.124]

Иными словами, математическим ожиданием случайной величины называется сумма произведений всех возможных значений случайной величины на вероятности этих значений.  [c.130]

Мы полагаем математическое ожидание случайной величины равным нулю, а дисперсию — единице.  [c.145]

Пусть 1 з0(со, х) —случайная функция г з(ш,л )—случайная вектор-функция <а— набор случайных параметров условий задачи Ь — детерминированный вектор G° — некоторое множество (детерминированное или случайное) Mf (to, х) — математическое ожидание случайной функции f(o>,x). В этих обозначениях различные стохастические модели со статистическими, вероятностными и смешанными ограничениями записываются в однообразной форме  [c.10]

Норма л в Но совпадает со среднеквадратическим значением 0 случайной величины х. В Я4 квадрат нормы равен сумме дисперсии и квадрата математического ожидания случайной величины л 2=ож2+ж2.  [c.20]

Пусть существуют векторы 5 и с — математические ожидания случайных векторов b к с соответственно. Тогда, как легко видеть, решение задачи (4.7) достигается на многогранном множестве  [c.271]

О средняя арифметическая для оценки математического ожидания случайной величины — функция СРЗНАЧ  [c.460]

Здесь ац и я,у (о>) - соответственно, детерминированный и случайный коэффициенты матрицы условий bjubi(u>) -детерминированная испуганная компоненты вектора ограничений шел - случайный параметр 5",- и в",у - математическое ожидание случайных величин и,- (и>) и а,у (о>) у/ - вероятность выполнения г -го условия Ф"1 (7г-) - обратная функция нормального распределения о - - дисперсия случайной величины в,у (и ) f - дисперсия случайной величины 1ц (ш) лу — интенсивность /-го способа производства.  [c.18]

Здесь t - число этапов хт = (x,, X2,. . . , XT) - вектор переменных (план) <лт = (со,, j2>.. ., ыг) - вектор случайных событий M t pt(xt, ы ) ш 1 -условное математическое ожидание случайной вектор-функции ) - случайный вектор ограничений /-го этапа, зависящий от наблюдения вероятностных параметров на предыдущих t—l этапах Gt — детерминированное множество допустимых решений задачи на -м этапе.  [c.59]

Математическим ожиданием случайной величины называется среднеожидаемое ее значение. Между МО(ж) и средним арифметическим такая же связь, как между вероятностью и частотой. МО(х) имеет размерность случайной величины.  [c.133]

В настоящей главе обсуждаются методы построения решающих правил для одноэтапных задач стохастического программирования, а для отдельных моделей приводятся и явные выражения для решающих правил. В 1 рассматриваются частные модели первого класса, в которых предполагается, что решающие правилалинейные функции случайных составляющих условий задачи. Вычисление параметров решающих правил сводится к задачам выпуклого программирования. Параграф 2 посвящен изучению. М-модели с вероятностным ограничением общего вида. Относительно решающего правила л (со) не делается никаких предположений, кроме того, что л (со)—измеримая вектор-функция на множестве X произвольной структуры, на котором она определена. В 3 метод построения решающих правил из предыдущего параграфа обобщается на М-модель с конечнозначным ограничением — с условием, ограничивающим математическое ожидание случайной функции от х, принимающей конечное число значений. Таким условием может быть аппроксимировано любое статистическое ограничение. В 4 построены решающие правила (точнее, решающие таблицы) дляч Р-мо-дели с вероятностными ограничениями общего вида. В 5 рассматривается стохастическая задача со смешанными ограничениями. Эта модель отличается от задачи 4 дополнительными условиями, которые могут существенно изменить структуру решения. В 6—8 построены решающие правила для одноэтапных задач стохастического программирования со статистическими ограничениями достаточно общего вида. Модель, изученная в 6, представляет собой стохастический аналог общей задачи линейного программирования с двухсторонними ограничениями. Модель из 7 — стохастический аналог общей задачи квадратичного программирования. Модель, исследованная в 8, является стохастическим аналогом частной задачи выпуклого программирования с квадратичной целевой функцией и квадратичными ограничениями. Заключительный параграф главы ( 9) посвящен итеративным методам построения решающих правил одноэтапных задач стохастического программирования.  [c.84]

Будем рассматривать двухэтапные задачи, в которых Ki ограничено и не пусто, задача второго этапа имеет конечное решение, вероятностная мера абсолютно непрерывна относительно меры Лебега и математические ожидания случайных параметров условий задачи существуют.  [c.190]

Эконометрика (2002) -- [ c.0 ]