В зависимости от содержательного смысла задача рассматривается как одноэтапная, когда решения об оценке прогнозов во всех точках ti принимаются одновременно, или как многоэтапная, когда вычисляются последовательно по мере накопления информации. При необходимости область определения задачи уточняется жесткие ограничения заменяются безусловными или условными вероятностными, учитываются допустимые стробы и другие условия, определяющие рациональное (в соответствии с задачами управления) соотношение между регулируемыми и нерегулируемыми ошибками прогноза. [c.43]
В 1—2 рассматриваются стохастические задачи с вероятностными ограничениями, порожденные моделями линейного программирования. В 1 оператор вероятности применяется к каждой строке ограничений в отдельности, а в 2 — одновременно к совокупности всех ограничений. В обоих параграфах рассматриваются такие распределения случайных параметров условий, при которых эквивалентные детерминированные задачи оказываются задачами выпуклого программирования. Параграф 3 посвящен построению эквивалентных детерминированных моделей для общей одноэтапной стохастической задачи с вероятностными ограничениями, порожденной, вообще говоря, нелинейной моделью математического программирования. В 4 рассматриваются две простые, но представляющие интерес для приложений частные модели стохастических задач, в которых решения определяются в детерминированных векторах. Параграфы 5—6 посвящены стохастическим моделям оценки невязок с детерминированными оптимальными планами. В 5 рассматривается классификация таких моделей. В 6 исследуются условия, при которых соответствующие детерминированные эквивалентные задачи являются задачами выпуклого программирования. Ясно, что только в таких случаях можно говорить о конструктивных методах решения задачи. [c.62]
Сравнивая последнюю задачу с исходной (1.1) — (1-3), приходим к выводу, что при p = G( ) следующие две одноэтапные задачи стохастического программирования с вероятностными ограничениями и априорными решающими правилами представляют собой двойственную [c.65]
Используя схему построения апостериорного решающего правила одноэтапной задачи с вероятностным ограничением, изложенную в 2 гл. 4, и результаты предыдущего параграфа, можно получить полное описание решения задачи (3.1) — (3.2). [c.212]
В настоящей главе обсуждаются методы построения решающих правил для одноэтапных задач стохастического программирования, а для отдельных моделей приводятся и явные выражения для решающих правил. В 1 рассматриваются частные модели первого класса, в которых предполагается, что решающие правила — линейные функции случайных составляющих условий задачи. Вычисление параметров решающих правил сводится к задачам выпуклого программирования. Параграф 2 посвящен изучению. М-модели с вероятностным ограничением общего вида. Относительно решающего правила л (со) не делается никаких предположений, кроме того, что л (со)—измеримая вектор-функция на множестве X произвольной структуры, на котором она определена. В 3 метод построения решающих правил из предыдущего параграфа обобщается на М-модель с конечнозначным ограничением — с условием, ограничивающим математическое ожидание случайной функции от х, принимающей конечное число значений. Таким условием может быть аппроксимировано любое статистическое ограничение. В 4 построены решающие правила (точнее, решающие таблицы) дляч Р-мо-дели с вероятностными ограничениями общего вида. В 5 рассматривается стохастическая задача со смешанными ограничениями. Эта модель отличается от задачи 4 дополнительными условиями, которые могут существенно изменить структуру решения. В 6—8 построены решающие правила для одноэтапных задач стохастического программирования со статистическими ограничениями достаточно общего вида. Модель, изученная в 6, представляет собой стохастический аналог общей задачи линейного программирования с двухсторонними ограничениями. Модель из 7 — стохастический аналог общей задачи квадратичного программирования. Модель, исследованная в 8, является стохастическим аналогом частной задачи выпуклого программирования с квадратичной целевой функцией и квадратичными ограничениями. Заключительный параграф главы ( 9) посвящен итеративным методам построения решающих правил одноэтапных задач стохастического программирования. [c.84]
В предыдущих параграфах главы мы рассматривали многоэтапные стохастические задачи с условными и безусловными, статистическими и вероятностными ограничениями. Более непосредственным и естественным обобщением классической двухэтапной модели стохастического программирования являются многоэтапные задачи, в которых исключаются невязки условий при всех реализациях случая. На каждом этапе после получения информации о реализованных случайных параметрах условий задачи и о принятом на предыдущем этапе решении вводится коррекция, гарантирующая удовлетворение ограничений при всевозможных состояниях природы oeQ. По аналогии с соответствующими одноэтапными моделями такие задачи естественно называть многоэтапными задачами стохастического программирования в жесткой постановке. В этих задачах ограничены не средние значения некоторых функционалов (как в моделях предыдущих параграфов), а значения случайных функционалов при всех реализациях oeQ. [c.202]