Модели стохастического управления, в которых закон управления или механизм управления учитывает последовательный характер накопления информации и может уточняться в процессе управления, описываются многоэтапными стохастическими задачами. Целевой функционал динамической задачи зависит от состояния системы на конечном (.S-M) этапе или от всей траектории системы. Область определения задачи отдельного этапа описывается жесткими или условными статистическими или условными вероятностными ограничениями. Оптимальные решающие правила или решающие распределения этих задач определяют законы управления или механизмы стохастического управления. [c.46]
Здесь обсуждаются стохастические модели с вероятностными ограничениями. Предполагается, что решающие правила представляют собой линейные функции случайных параметров условий задачи. Принятое допущение о нормальном распределении случайных составляющих вектора ограничений позволяет свести вычисление детерминированных параметров решающих правил к схемам выпуклого программирования. [c.84]
Диаметр детали, обрабатываемой на токарном станке, вообще говоря, случайная величина. При определенных условиях механизм возникновения случайных отклонений размеров деталей от заданных позволяет в первом приближении считать диаметр /-и детали нормально распределенной случайной величиной Xj N ( j,j, aj). Дисперсия ст2 отклонения размеров деталей от заданных зависит от различных параметров, определяющих режим работы станка. Вид зависимости предполагается известным. Деталь, прошедшая технический контроль, идет в продажу по цене j за штуку (/-го типа), если ее диаметр не выходит из допустимого интервала di x d . Если диаметр детали /-го типа меньше d деталь признается негодной. Если диаметр превышает величину d j, деталь поступает на доработку, и, следовательно, затраты на ее выпуск повышаются. Ясно, что выбор параметров режима станка, гарантирующего максимальное значение средней прибыли при заданных ресурсах и фиксированной вероятности удовлетворения спроса на детали всех типов, сводится к решению задачи стохастического программирования с вероятностными ограничениями. Решение задачи (размеры диаметров деталей) целесообразно определять в виде нормального решающего распределения, статистические характеристики которого зависят известным образом от искомых значений параметров режима работы станка. [c.142]
В [120] рассматриваются задачи стохастического программирования с вероятностными ограничениями, в которых по тем или иным соображениям естественно считать, что априорные решающие распределения нормальны. Так называемые нормальные стохастические модели имеют вид [c.142]
В ряде стохастических задач требование целочисленности не вызывает дополнительных трудностей при построении решающих правил и решающих распределений. С такими ситуациями сталкиваются, главным образом, в моделях, в которых помимо вероятностных или статистических условий имеются жесткие ограничения типа x G и методы построения решающих правил не исключают дискретный характер множества G. К сожалению, чаще приходится встречаться со стохастическими задачами, в которых требование целочисленности существенно усложняет конструирование решающих правил. В ряде случаев трудности могут быть обойдены, если содержательный смысл задачи позволяет определять оптимальный план не в виде решающих правил, а в виде решающих распределений (т. е. не в чистых, а в смешанных стратегиях). [c.149]
В общем случае неясно, как записать выражения для области К в более конструктивной форме. В этом трудность исследования задач стохастического программирования с безусловными вероятностными ограничениями. Однако при некоторых частных предположениях относительно вида решающих правил [или относительно функций распределения Fbv(-)] удается получить явное выражение для области (4.7) и решить задачу (4.8). [c.200]
В литературе исследуются и (при некоторых предположениях относительно распределения случайных параметров условий задачи) решаются задачи с безусловными вероятностными ограничениями, в которых решающие правила заранее предполагаются линейными. Решение многоэтапных стохастических задач с безусловными ограничениями при достаточно общих предположениях относительно допустимых решающих правил требует преодоления серьезных теоретических и вычислительных трудностей. В ряде случаев исследование упрощается при сведении задачи с безусловными статистическими ограничениями к эквивалентной стохастической задаче с условными статистическими ограничениями. [c.201]
Как мы видели, вычисление априорных решающих правил линейной многоэтапной стохастической задачи с условными вероятностными ограничениями сводится к решению задачи вида (1.6) — (1.8). Условная функция распределения компонент вектора bi при фиксированном наборе со1 -1 предполагается известной. Однако вычисление [c.239]
Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информации — многоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами. [c.6]
В многоэтапной модели фильтрации и прогноза на i -м этапе, исходя из накопленной до сих пор информации и принятых решений, сглаживается или экстраполируется процесс т)(/) при t=ti. При этом, однако, учитывается, что критерий качества и ограничения задачи связывают между собой все оценки j, i—1,. .., п. Многоэтапная модель фильтрации и прогнозирования описывается многоэтапной задачей стохастического программирования с жесткими или условными статистическими или условными вероятностными ограничениями. В зависимости от содержательных особенностей задачи многоэтапная модель, как и одноэтап-ная, решается в априорных или апостериорных решающих правилах или решающих распределениях. [c.39]