В многоэтапных задачах упомянутого типа предполагается, что на каждом последующем этапе требуется полностью компенсировать невязки, связанные с принятыми решениями и реализованными значениями параметров условий. Перспективным обобщением многоэтапных задач с жесткими условиями являются многоэтапные задачи стохастического программирования с безусловными и условными вероятностными или статистическими ограничениями. <В задачах этого класса требуется,, чтобы на каждом этапе вероятность удовлетворения ограничений превышала некоторую заранее заданную величину или чтобы математические ожидания некоторых функций от невязок условий были бы ограничены заданными числами или функциями от наблюденных на предыдущих этапах значений случайных параметров. Кроме того, на каждом этапе могут быть заданы и жесткие ограничения. [c.14]
Настоящая глава посвящена не технологии математического обеспечения (в указанном смысле), а математическим вопросам, связанным с постановкой задач и построением решающих правил. В 1 вводятся некоторые вспомогательные понятия, необходимые для формальной постановки и обсуждения многоэтапных задач стохастического программирования. Параграф 2 посвящен многоэтапным стохастическим задачам с условными ограничениями. В 3 обсуждается задача -отдельного этапа многоэтапной задачи -с условными статистическими ограничениями. В 4 рассматриваются многоэтапные задачи стохастического программирования с безусловными ограничениями. В 5 изучаются многоэтапные стохастические задачи в жесткой постановке. В заключительном параграфе главы (см. 6) сравниваются различные информационные структуры и изучается роль информации при анализе многоэтапных стохастических задач. [c.193]
Введенные понятия и обозначения позволяют сформулировать общую схему многоэтапной задачи стохастического программирования с условными статистическими ограничениями. [c.193]
Выделим две принципиально различные интерпретации задачи (2.1) — (2.3) и в соответствии с этим разделим задачи вида (2.1) —(2.3) на два подкласса. В задачах первого подкласса решение Xi на г-м этапе принимается после наблюдения реализации состояния природы (случайных параметров условий задачи) на г -м этапе. Решающие правила задач первого подкласса имеют вид Xi — Xii ), t = l,. .., п. Будем называть задачи первого подкласса многоэтапными задачами стохастического программирования с условными статистическими ограничениями и с апостериорными решающими правилами. [c.194]
В задачах второго подкласса решение на t-м этапе принимается после реализации случайных параметров условий на предыдущем (г—1)-м этапе. Решающие правила задач второго подкласса имеют вид Xi = Xi((ui 1), i=l,. .., п. Будем называть задачи второго подкласса многоэтапными задачами стохастического программирования с условными статистическими ограничениями и с априорными решающими-правилами. [c.194]
Подчеркнем особенности решения многоэтапных стохастических задач с условными статистическими ограничениями. Проведем рассуждения в терминах априорных решающих правил. Обсуждение особенностей решения задач с апостериорными решающими правилами проводится по такой же схеме. [c.195]
Постановки задач многоэтапного стохастического программирования с условными статистическими ограничениями и методы анализа решающих правил, соответствующих различной информации о состоянии системы в момент выбора решений, могут быть при некоторой модификации интерпретированы как модели и методы анализа многоуровневых иерархических систем управления, работающих в условиях неполной информации. Задание подкласса измеримых функций, из которого следует выбирать решающие правила, определяет здесь взаимодействие, координацию, управление и характер обмена информацией между звеньями одного уровня и звеньями. различных уровней. Представляется, что синтез многоэтапных и многоуровневых стохастических моделей выбора решений является основой формального аппарата качественного исследования и численного анализа сложных систем управления. [c.196]
В литературе исследуются и (при некоторых предположениях относительно распределения случайных параметров условий задачи) решаются задачи с безусловными вероятностными ограничениями, в которых решающие правила заранее предполагаются линейными. Решение многоэтапных стохастических задач с безусловными ограничениями при достаточно общих предположениях относительно допустимых решающих правил требует преодоления серьезных теоретических и вычислительных трудностей. В ряде случаев исследование упрощается при сведении задачи с безусловными статистическими ограничениями к эквивалентной стохастической задаче с условными статистическими ограничениями. [c.201]
В главе приводится качественное исследование многоэтапных задач -стохастического программирования с апостериорными решающими правилами ( 1). В 2 формируется общий рекуррентный алгоритм построения апостериорных решающих правил. В 3 алгоритм конкретизируется применительно к многоэтапной стохастической задаче с условными вероятностными ограничениями, а в 5 — применительно к многоэтапной квадратичной задаче с условными статистическими. ограничениями. Параграф 4 посвящен Л-задаче, двойственной к многоэтапной задаче стохастического программирования. [c.207]
Рассмотрим многоэтапную задачу стохастического программирования с условными статистическими ограничениями [c.207]
Общая многоэтапная задача стохастического программирования с условными статистическими ограничениями 252, 257 [c.396]
Теория многоэтапного стохастического программирования еще слабо развита. Конструктивных методов решения задач достаточно общего вида в настоящее время нет. Имеются лишь методы решения частных классов многоэтапных стохастических задач с условными или безусловными вероятностными ограничениями. Чтобы расширить круг приложений разрабатываемых конструктивных вычислительных методов, естественно попытаться установить связь между задачами с условными и безусловными статистическими ограничениями, отвечающими одним и тем же функциям фо(ы", хп) и г з/((сой, xh), k = ],. .., п. [c.198]
Соотношения между решающими правилами задач стохастического программирования с условными и безусловными статистическими ограничениями определяются следующей теоремой, являющейся естественным обобщением утверждения, установленного в [340] для частной линейной многоэтапной задачи управления в условиях неполной информации. [c.198]
Настоящая монография содержит пятнадцать глав. В гл. 1, носящей вводный характер, классифицируются постановки задач стохастического программирования, приводится краткая историческая оправка и излагается вспомогательный математический аппарат. Глава 2 посвящена анализу постановок различных технических и экономических прикладных задач управления в условиях неполной информации. Содержание последующих девяти глав связано с активным подходом к стохастическому программированию — (формальной основой для выбора решений в условиях неполной информации. В гл. 3—5 исследуются од-ноэтапные стохастические задачи с вероятностными и статистическими ограничениями, решаемые в чистых и смешанных стратегиях, в априорных и апостериорных решающих правилах и решающих распределениях. Главы 6—8 посвящены теории и вычислительным схемам классической двухзтапной задачи стохастического программирования. В гл. 9—11 описаны динамические модели управления в условиях неполной информации — многоэтапные задачи стохастического программирования с условными и безусловными статистическими и вероятностными ограничениями с априорными и апостериорными решающими правилами. [c.6]
В многоэтапной модели фильтрации и прогноза на i -м этапе, исходя из накопленной до сих пор информации и принятых решений, сглаживается или экстраполируется процесс т)(/) при t=ti. При этом, однако, учитывается, что критерий качества и ограничения задачи связывают между собой все оценки j, i—1,. .., п. Многоэтапная модель фильтрации и прогнозирования описывается многоэтапной задачей стохастического программирования с жесткими или условными статистическими или условными вероятностными ограничениями. В зависимости от содержательных особенностей задачи многоэтапная модель, как и одноэтап-ная, решается в априорных или апостериорных решающих правилах или решающих распределениях. [c.39]
В предыдущих параграфах главы мы рассматривали многоэтапные стохастические задачи с условными и безусловными, статистическими и вероятностными ограничениями. Более непосредственным и естественным обобщением классической двухэтапной модели стохастического программирования являются многоэтапные задачи, в которых исключаются невязки условий при всех реализациях случая. На каждом этапе после получения информации о реализованных случайных параметрах условий задачи и о принятом на предыдущем этапе решении вводится коррекция, гарантирующая удовлетворение ограничений при всевозможных состояниях природы oeQ. По аналогии с соответствующими одноэтапными моделями такие задачи естественно называть многоэтапными задачами стохастического программирования в жесткой постановке. В этих задачах ограничены не средние значения некоторых функционалов (как в моделях предыдущих параграфов), а значения случайных функционалов при всех реализациях oeQ. [c.202]
Первой попыткой перехода от статических моделей стохастического программирования к динамическим была, по-видимому, двухэтапная задача Данцига — Маданского. Двухэтапная задача может быть обобщена в различных направлениях. Естественно, например, перейти к многоэтапной задаче с жесткими ограничениями (с ограничениями, которые должны выполняться при всех возможных реализациях случая, подобно тому, как это предполагается в классической двухэтапной задаче). Такого рода подходы рассматривались Беллманом [10], Дж. Данцигом [88], Н. 3. Шором и др. [332, 334—336]. Здесь мы, однако, рассмотрим более широкие обобщения двухэтапной задачи — различные постановки многоэтапных стохастических задач с безусловными и условными статистическими, вероятностными и жесткими ограничениями. Частные модели подобного типа обсуждались в [70, 308—310] и других работах. Многоэтапные модели стохастического программирования имеют многочисленные приложения к задачам планирования в экономике и технике. Ряд практических проблем, возникающих при перспективном планировании, при многостадийном проектировании, при управлении боевыми операциями, при планировании экспериментов и оперативном управлении космическими объектами, при регулировании технологических процессов, подверженных случайным возмущениям, может быть рассмотрен как многоэтапные стохастические задачи со статистическими вероятностными и жесткими ограничениями. [c.192]